Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
652 result(s) for "Cyclin D - genetics"
Sort by:
Molecular crosstalk between cancer and neurodegenerative diseases
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Mutations disrupting neuritogenesis genes confer risk for cerebral palsy
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent–offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two ( TUBA1A and CTNNB1 ) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB , and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy. Whole-exome sequencing of 250 parent–offspring trios identifies an enrichment of rare damaging de novo mutations in individuals with cerebral palsy and implicates genetically mediated dysregulation of early neuronal connectivity in the etiology of this disorder.
LncRNA CDKN2B-AS1/miR-141/cyclin D network regulates tumor progression and metastasis of renal cell carcinoma
The molecular heterogeneity of renal cell carcinoma (RCC) complicates the therapeutic interventions for advanced metastatic disease and thus its management remains a significant challenge. This study investigates the role of the lncRNA CDKN2B-AS1 and miR-141-3p interactions in the progression and metastasis of kidney cancer. Human renal cancer cell lines (ACHN and Caki1), normal RPTEC cells, tissue cohorts, and a series of in vitro assays and in vivo mouse model were used for this study. An overexpression of CDKN2B-AS1 was observed in RCC compared to normal samples in TCGA and our in-house SFVAMC tissue cohorts. Reciprocally, we observed reduced expression of miR-141 in RCC compared to normal in the same cohorts. CDKN2B-AS1 shares regulatory miR-141 binding sites with CCND1 and CCND2 genes. Direct interactions of CDKN2B-AS1 /miR-141/Cyclin D1–D2 were confirmed by RNA immunoprecipitation and luciferase reporter assays indicating that CDKN2B-AS1 /miR-141/Cyclin D1–D2 acts as a ceRNA network in RCC. Functionally, attenuation of CDKN2B-AS1 and/or overexpression of miR-141 inhibited proliferation, clonogenicity, migration/invasion, induced apoptosis in vitro and suppressed tumor growth in xenograft mouse model. Further, overexpression of CDKN2B-AS1 is positively correlated with poor overall survival of RCC patients. Expression of miR-141 also robustly discriminated malignant from non-malignant tissues and its inhibition in normal RPTEC cells induced pro-cancerous characteristics. CDKN2B-AS1 attenuation or miR-141 overexpression decreased CCND1/CCND2 expression, resulting in reduced RAC1/pPXN that are involved in migration, invasion and epithelial–mesenchymal transition. This study, for the first time, deciphered the role of CDKN2B-AS1 /miR-141/Cyclin D axis in RCC and highlights this network as a promising therapeutic target for the regulation of EMT driven metastasis in RCC.
Cyclin D as a therapeutic target in cancer
Key Points Cyclin D–cyclin-dependent kinase 4 (CDK4) or CDK6 activation promotes cell cycle progression through the phosphorylation of substrates, including RB and transcription factors with roles in proliferation and differentiation. These kinase complexes also target substrates with roles in centrosome duplication, mitochondrial function, cell growth, cell adhesion and motility, and cytoskeletal modelling. D-type cyclins have non-catalytic roles in which interactions with chromatin-modifying enzymes and diverse transcription factors, including steroid hormone receptors, leads to the transcriptional regulation of suites of genes that are involved in proliferation and differentiation. Independently of CDK activation, the D-type cyclins also facilitate efficient DNA repair and indirectly activate CDK2 through the sequestration of CDK inhibitors. CCND1 is an established human oncogene that is commonly overexpressed through copy number alterations, or more rarely by mutation, or as a consequence of the deregulation of mitogenic signalling downstream of oncogenes such as ERBB2. CCND1 overexpression causes a number of potentially oncogenic responses in experimental models and is associated with poor patient outcome. Cyclin D1 and its associated CDKs are potential therapeutic targets. Promising results from early CDK inhibitors in experimental systems were not followed by evidence for efficacy in clinical trials. Possible reasons for this disappointing outcome include poor pharmacokinetics, suboptimal dosing schedules and clinical testing in unselected patient populations. Second-generation, more selective inhibitors of CDK4 and CDK6 are now undergoing clinical testing. Possible alternative approaches to targeting cyclin D1 include the use of compounds that affect CCND1 transcription or cyclin D1 protein turnover, and the use of combination therapies that simultaneously target multiple end points of cyclin D1 action. Central to the effective use of these novel approaches is the better selection of patient subgroups that are likely to respond. Is the ability of D-type cyclins to activate cyclin-dependent kinases an effective means of targeting these oncogenes, and how might the patient subgroups that are most likely to benefit be identified? Cyclin D1, and to a lesser extent the other D-type cyclins, is frequently deregulated in cancer and is a biomarker of cancer phenotype and disease progression. The ability of these cyclins to activate the cyclin-dependent kinases (CDKs) CDK4 and CDK6 is the most extensively documented mechanism for their oncogenic actions and provides an attractive therapeutic target. Is this an effective means of targeting the cyclin D oncogenes, and how might the patient subgroups that are most likely to benefit be identified?
Evidence that the human cell cycle is a series of uncoupled, memoryless phases
The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time‐lapse microscopy, we found that each phase duration follows an Erlang distribution and is statistically independent from other phases. We challenged this observation by perturbing phase durations through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Despite large changes in durations in cell populations, phase durations remained uncoupled in individual cells. These results suggested that the independence of phase durations may arise from a large number of molecular factors that each exerts a minor influence on the rate of cell cycle progression. We tested this model by experimentally forcing phase coupling through inhibition of cyclin‐dependent kinase 2 (CDK2) or overexpression of cyclin D. Our work provides an explanation for the historical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states. Synopsis Time‐lapse imaging of cell‐cycle phase transitions reveals that phase durations are uncoupled and can be modeled as an Erlang process. Phase coupling can be forced by perturbing a strong cell‐cycle regulator acting on multiple phases. Cell‐cycle phase durations are uncoupled in three human cell lines. Each cell‐cycle phase proceeds like a sequence of memoryless steps that can be modeled as an Erlang process. A “many‐for‐all model”, in which large number of factors each exerting minor influence on phase duration, explains the stochastic but heritable nature of cell cycle progression. Coupling between cell‐cycle phases can be introduced by perturbing a cell‐cycle regulator of multiple phases. Graphical Abstract Time‐lapse imaging of cell‐cycle phase transitions reveals that phase durations are uncoupled and can be modeled as an Erlang process. Phase coupling can be forced by perturbing a strong cell‐cycle regulator acting on multiple phases. This article has been featured on the April cover of the journal.
MICAL1 facilitates breast cancer cell proliferation via ROS‐sensitive ERK/cyclin D pathway
Molecule interacting with CasL 1 (MICAL1) is a multidomain flavoprotein mono‐oxygenase that strongly involves in cytoskeleton dynamics and cell oxidoreduction metabolism. Recently, results from our laboratory have shown that MICAL1 modulates reactive oxygen species (ROS) production, and the latter then activates phosphatidyl inositol 3‐kinase (PI3K)/protein kinase B (Akt) signalling pathway which regulates breast cancer cell invasion. Herein, we performed this study to assess the involvement of MICAL1 in breast cancer cell proliferation and to explore the potential molecular mechanism. We noticed that depletion of MICAL1 markedly reduced cell proliferation in breast cancer cell line MCF‐7 and T47D. This effect of MICAL1 on proliferation was independent of wnt/β‐catenin and NF‐κB pathways. Interestingly, depletion of MICAL1 significantly inhibited ROS production, decreased p‐ERK expression and unfavourable for proliferative phenotype of breast cancer cells. Likewise, MICAL1 overexpression increased p‐ERK level as well as p‐ERK nucleus translocation. Moreover, we investigated the effect of MICAL1 on cell cycle‐related proteins. MICAL1 positively regulated CDK4 and cyclin D expression, but not CDK2, CDK6, cyclin A and cyclin E. In addition, more expression of CDK4 and cyclin D by MICAL1 overexpression was blocked by PI3K/Akt inhibitor LY294002. LY294002 treatment also attenuated the increase in the p‐ERK level in MICAL1‐overexpressed breast cancer cells. Together, our results suggest that MICAL1 exhibits its effect on proliferation via maintaining cyclin D expression through ROS‐sensitive PI3K/Akt/ERK signalling in breast cancer cells.
A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state
For the optimal survival of a species, an organism coordinates its reproductive decisions with the nutrient availability of its niche. Thus, nutrient-sensing pathways like insulin-IGF-1 signaling (IIS) play an important role in modulating cell division, oogenesis, and reproductive aging. Lowering of the IIS leads to the activation of the downstream FOXO transcription factor (TF) DAF-16 in Caenorhabditis elegans which promotes oocyte quality and delays reproductive aging. However, less is known about how the IIS axis responds to changes in cell cycle proteins, particularly in the somatic tissues. Here, we show a new aspect of the regulation of the germline by this nutrient-sensing axis. First, we show that the canonical G1-S cyclin, Cyclin D/CYD-1, regulates reproductive fidelity from the uterine tissue of wild-type worms. Then, we show that knocking down cyd-1 in the uterine tissue of an IIS receptor mutant arrests oogenesis at the pachytene stage of meiosis-1 in a DAF-16-dependent manner. We observe activated DAF-16-dependent deterioration of the somatic gonadal tissues like the sheath cells, and transcriptional de-regulation of the sperm-to-oocyte switch genes which may be the underlying reason for the absence of oogenesis. Deleting DAF-16 releases the arrest and leads to restoration of the somatic gonad but poor-quality oocytes are produced. Together, our study reveals the unrecognized cell non-autonomous interaction of Cyclin D/CYD-1 and FOXO/DAF-16 in the regulation of oogenesis and reproductive fidelity.
Stem and progenitor cell proliferation are independently regulated by cell type-specific cyclinD genes
Regeneration and homeostatic turnover of solid tissues depend on the proliferation of symmetrically dividing adult stem cells, which either remain stem cells or differentiate based on their niche position. Here we demonstrate that in zebrafish lateral line sensory organs, stem and progenitor cell proliferation are independently regulated by two cyclinD genes. Loss of ccnd2a impairs stem cell proliferation during development, while loss of ccndx disrupts hair cell progenitor proliferation but allows normal differentiation. Notably, ccnd2a can functionally replace ccndx , indicating that the respective effects of these Cyclins on proliferation are due to cell type-specific expression. However, even though hair cell progenitors differentiate normally in ccndx mutants, they are mispolarized due to hes2 and Emx2 downregulation. Thus, regulated proliferation ensures that equal numbers of hair cells are polarized in opposite directions. Our study reveals cell type-specific roles for cyclinD genes in regulating the different populations of symmetrically dividing cells governing organ development and regeneration, with implications for regenerative medicine and disease. Proliferation of adult tissue stem cells is tightly regulated to balance maintenance of the tissue against stem cell exhaustion or cancerous expansion. Here they show that zebrafish lateral line progenitors are differentially regulated by two cyclinD genes, which control developmental and adult progenitor proliferation as well as hair cell polarization.
Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth
Pattern and growth in plants In higher animals and plants the processes of growth and patterning are coordinated. Much is known about the genes regulating patterning and many genes have been identified that are involved in cell-cycle control, but there are few instances in which a connection has been made between the two. A study of patterning in Arabidopsis root now shows that two key regulators of root-organ patterning directly control the transcription of specific components of the cell-cycle machinery. This demonstrates a direct link between developmental regulators, components of the cell-cycle machinery and organ patterning. In higher animals and plants, the processes of growth and patterning are coordinated. In this study, the authors study patterning in Arabidopsis root and show that two key regulators of root organ patterning directly control the transcription of specific components of the cell-cycle machinery. This study provides a direct link between developmental regulators, components of the cell-cycle machinery and organ patterning. The development of multicellular organisms relies on the coordinated control of cell divisions leading to proper patterning and growth 1 , 2 , 3 . The molecular mechanisms underlying pattern formation, particularly the regulation of formative cell divisions, remain poorly understood. In Arabidopsis , formative divisions generating the root ground tissue are controlled by SHORTROOT (SHR) and SCARECROW (SCR) 4 , 5 , 6 . Here we show, using cell-type-specific transcriptional effects of SHR and SCR combined with data from chromatin immunoprecipitation-based microarray experiments, that SHR regulates the spatiotemporal activation of specific genes involved in cell division. Coincident with the onset of a specific formative division, SHR and SCR directly activate a D-type cyclin; furthermore, altering the expression of this cyclin resulted in formative division defects. Our results indicate that proper pattern formation is achieved through transcriptional regulation of specific cell-cycle genes in a cell-type- and developmental-stage-specific context. Taken together, we provide evidence for a direct link between developmental regulators, specific components of the cell-cycle machinery and organ patterning.
MEK5/ERK5 inhibition sensitizes NRAS-mutant melanoma to MAPK-targeted therapy by preventing Cyclin D/CDK4-mediated G1/S progression
Despite the advent of immune-oncological therapies, patients with advanced NRAS -mutant melanoma still have a significantly worse prognosis than their BRAF -mutant counterparts. This is mainly due to a high propensity for resistance to available therapies targeting the RAS/RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway (MAPKi). Preclinical studies and mouse models have implicated the stress-activated MEK5/ERK5 MAPK cascade as a major resistance pathway activated by MAPKi-based targeted therapy in NRAS -mutant melanoma. Accordingly, MAPKi/ERK5i co-inhibition was capable of triggering a sustained cell cycle arrest in NRAS -mutant melanoma cells, but the key mediator(s) of its vigorous anti-proliferative effect remain elusive. Here, we further investigated the mechanism of MAPKi/ERK5i-induced cell cycle arrest in NRAS -mutant melanoma cells using both genetic methods and pharmacological inhibitors. Transcriptome analysis of human NRAS -mutant melanoma cells established that MAPKi/ERK5iinduced a near-complete shutdown of the mitotic machinery as consequence of a sustained G1 cell cycle arrest. This arrest was not only observed in diverse treatment-naïve melanoma cells but could also be induced in cells that already had developed resistance to therapeutic MEK inhibition (MEKi) and was accompanied by suppression of Cyclin D1 and E2F-mediated gene expression. Forced expression of Cyclin D1 and its effector kinase CDK4 restored cell cycle progression and mitotic gene expression in NRAS- mutant melanoma cells exposed to MEKi/ERK5i, implying Cyclin D/CDK4 activity as major target of combined MEKi/ERK5i. These findings suggest Cyclin D/CDK4 dependency as a major vulnerability of NRAS -mutant melanoma that could effectively be targeted by combined MAPKi/ERK5i.