Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,312 result(s) for "Cyclin E - genetics"
Sort by:
Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints
Cancer and cell senescence Cancer is commonly thought of as uncontrolled cellular proliferation, but in the early stages of many cancers, oncogene expression is associated with cellular senescence. A possible explanation for this has now been found. Two groups report a link between oncogene-induced senescence and the DNA damage response. Activated oncogenes can cause aberrant DNA replication and thereby DNA damage that can lead to cell senescence. Cellular senescence was found previously to be a barrier to tumorigenesis in vivo , so oncogene-induced senescence may be an innate defence against cancer. But its effectiveness is often disabled by further mutations. Understanding the relationship between cell senescence and tumour formation may aid in the development of diagnostic and prognostic tools based on senescence markers. One of two papers linking oncogene-induced senescence and the DNA damage response. Activated oncogenes can cause aberrant DNA replication and thereby DNA damage, which leads to cellular senescence. This response can block tumour progression, but is often disabled by further alterations. Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest 1 , 2 , whereas a second barrier is mediated by oncogene-induced senescence 3 , 4 , 5 , 6 . The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression.
DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
During the evolution of cancer, the incipient tumour experiences ‘oncogenic stress’, which evokes a counter-response to eliminate such hazardous cells. However, the nature of this stress remains elusive, as does the inducible anti-cancer barrier that elicits growth arrest or cell death. Here we show that in clinical specimens from different stages of human tumours of the urinary bladder, breast, lung and colon, the early precursor lesions (but not normal tissues) commonly express markers of an activated DNA damage response. These include phosphorylated kinases ATM and Chk2, and phosphorylated histone H2AX and p53. Similar checkpoint responses were induced in cultured cells upon expression of different oncogenes that deregulate DNA replication. Together with genetic analyses, including a genome-wide assessment of allelic imbalances, our data indicate that early in tumorigenesis (before genomic instability and malignant conversion), human cells activate an ATR/ATM-regulated DNA damage response network that delays or prevents cancer. Mutations compromising this checkpoint, including defects in the ATM–Chk2–p53 pathway, might allow cell proliferation, survival, increased genomic instability and tumour progression. Cancer checkpoint Two groups this week report findings that could have a big impact on our view of cancer development. Both looked at tumours (bladder, breast and colorectal, and in lung and skin) in various stages of progression for signs of a DNA damage response. And both find that early stages of cancer development are associated with an active DNA damage response and p53-dependent cell death. This suggests that the induction of a DNA damage response by oncogenic events is a potent tumour suppression mechanism, and explains the selective pressure for p53 mutations in precancerous lesions. Importantly, activation of the DNA damage checkpoint occurs before chromosome instability and malignancy. On the cover, 53BP1 foci in lung hyperplasia (green indicates DNA damage checkpoint activation).
CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers
Deregulation of the cell cycle machinery is a hallmark of cancer. While CDK4/6 inhibitors are FDA approved (palbociclib) for treating advanced estrogen receptor-positive breast cancer, two major clinical challenges remain: (i) adverse events leading to therapy discontinuation and (ii) lack of reliable biomarkers. Here we report that breast cancer cells activate autophagy in response to palbociclib, and that the combination of autophagy and CDK4/6 inhibitors induces irreversible growth inhibition and senescence in vitro, and diminishes growth of cell line and patient-derived xenograft tumours in vivo . Furthermore, intact G1/S transition (Rb-positive and low-molecular-weight isoform of cyclin E (cytoplasmic)-negative) is a reliable prognostic biomarker in ER positive breast cancer patients, and predictive of preclinical sensitivity to this drug combination. Inhibition of CDK4/6 and autophagy is also synergistic in other solid cancers with an intact G1/S checkpoint, providing a novel and promising biomarker-driven combination therapeutic strategy to treat breast and other solid tumours. CDK4/6-Cyclin D pathway is often deregulated in cancer; therefore specific inhibitors have been developed. Here the authors show that treatment with CDK4/6 inhibitors activate autophagy in breast cancer cells; thus, combination of such inhibitors with autophagy inhibitors results in a synergistic effect on tumour growth.
NUB1, an interferon-inducible protein, mediates anti-proliferative actions and apoptosis in renal cell carcinoma cells through cell-cycle regulation
Background: NEDD8 ultimate buster 1 (NUB1) is an interferon (IFN)-inducible protein that downregulates NEDD8 expression and its conjugation system. Although overexpression of NUB1 induces a growth-inhibitory effect in cells, the mechanisms underlying the anti-mitogenic actions of NUB1 in cancer cells remain uncertain. We investigated the anti-cancer effects of NUB1 in human renal cell carcinoma (RCC) cells. Methods: Nine human RCC cells were used for this study. The proliferation of RCC cells exposed to IFN- α was measured by water-soluble tetrazolium salt assay. The expression level of NUB1 in cells was measured by quantitative reverse transcriptase PCR or western blot analysis. Apoptosis and cell-cycle analysis were performed by flow cytometry. Silencing of NUB1 was performed using a small interfering RNA. Results: Both NUB1 messenger RNA and protein were significantly induced by IFN- α in seven out of nine selected RCC cell lines, and the NUB1 expressions induced by IFN- α correlated positively with cell growth inhibition. Overexpression of NUB1 remarkably induced S-phase transition during cell cycle and apoptosis in IFN- α -resistant A498 cells, in which NUB1 is not induced by IFN- α . The expression levels of two cell-cycle regulator proteins, cyclin E and p27, were increased under the aforementioned conditions. The knockdown of NUB1 enhanced cell proliferation of IFN- α -resistant A498 cells and suppressed IFN- α -induced growth inhibition in IFN- α -sensitive 4TUHR cells. Conclusion: NUB1 may be a key factor involved not only in cell growth inhibition by IFN- α in RCC cells but also in the anti-cancer effect against IFN- α -resistant RCC cells.
Molecular crosstalk between cancer and neurodegenerative diseases
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress
Oncogene activation results in firing of ectopic origins of replication within transcribed genes, resulting in replication stress and genome instability. How oncogenes drive genome instability Oncogenes can cause genome instability by inducing replication stress, but the molecular mechanisms that underpin this process were unknown. Morgane Macheret and Thanos Halazonetis demonstrate that oncogene activation in human cancer cells results in firing of ectopic origins of replication within transcribed genes. These origins are normally quiescent, as they are suppressed by transcription. When activated, these intragenic origins lead to conflicts between replication and transcription, resulting in collapsed replication forks, double-stranded breaks and translocations. Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer 1 , 2 , 3 , 4 . However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC . Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.
Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma
E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.
Real-world clinical multi-omics analyses reveal bifurcation of ER-independent and ER-dependent drug resistance to CDK4/6 inhibitors
To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of ESR1 and RB1 alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent. The ER independent subgroup, growing from 5% pre-treatment to 21% post-progression, is characterized by down-regulated estrogen signaling and enrichment of resistance markers including TP53 mutations, CCNE1 over-expression and Her2/Basal subtypes. Trajectory inference analyses identify a pseudotime variable strongly correlated with ER independence and disease progression; and revealed bifurcated evolutionary trajectories for ER-independent vs. ER-dependent drug resistance mechanisms. Machine learning models predict therapeutic dependency on ESR1 and CDK4 among ER-dependent tumors and CDK2 dependency among ER-independent tumors, confirmed by experimental validation. CDK4/6 inhibitors are standard-of-care treatment of breast cancer, however resistance is common. Here, the authors analyse real world multi-omics data from 400 breast cancer patients and identify bifurcated evolutionary trajectories associated with ER independent resistance.
Semaphorin7A Promotion of Tumoral Growth and Metastasis in Human Oral Cancer by Regulation of G1 Cell Cycle and Matrix Metalloproteases: Possible Contribution to Tumoral Angiogenesis
Semaphorins (SEMAs) consist of a large family of secreted and membrane-anchored proteins that are important in neuronal pathfinding and axon guidance in selected areas of the developing nervous system. Of them, SEMA7A has been reported to have a chemotactic activity in neurogenesis and to be an immunomodulator; however, little is known about the relevance of SEMA7A in the behaviors of oral squamous cell carcinoma (OSCC). We evaluated SEMA7A expression in OSCC-derived cell lines and primary OSCC samples using quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and semiquantitative immunohistochemistry (sq-IHC). In addition, SEMA7A knockdown cells (shSEMA7A cells) were used for functional experiments, including cellular proliferation, invasiveness, and migration assays. We also analyzed the clinical correlation between SEMA7A status and clinical behaviors in patients with OSCC. SEMA7A mRNA and protein were up-regulated significantly (P<0.05) in OSCC-derived cell lines compared with human normal oral keratinocytes. The shSEMA7A cells showed decreased cellular growth by cell-cycle arrest at the G1 phase, resulting from up-regulation of cyclin-dependent kinase inhibitors (p21Cip1 and p27Kip1) and down-regulation of cyclins (cyclin D1, cyclin E) and cyclin-dependent kinases (CDK2, CDK4, and CDK6); and decreased invasiveness and migration activities by reduced secretion of matrix metalloproteases (MMPs) (MMP-2, proMMP-2, pro-MMP-9), and expression of membrane type 1- MMP (MT1-MMP). We also found inactivation of the extracellular regulated kinase 1/2 and AKT pathways, an upstream molecule of cell-cycle arrest at the G1 phase, and reduced secretion of MMPs in shSEMA7A cells. sq-IHC showed that SEMA7A expression in the primary OSCCs was significantly (P = 0.001) greater than that in normal counterparts and was correlated with primary tumoral size (P = 0.0254) and regional lymph node metastasis (P = 0.0002). Our data provide evidence for an essential role of SEMA7A in tumoral growth and metastasis in OSCC and indicated that SEMA7A may play a potential diagnostic/therapeutic target for use in patients with OSCC.
Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors
Cyclin-dependent kinase (CDK) 4/6 inhibitors have emerged in the treatment of metastatic hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. However, most patients will eventually present disease progression, highlighting the inevitable resistance of cancer cells to CDK4/6 inhibition. Several studies have suggested that resistance mechanisms involve aberrations of the molecules that regulate the cell cycle, and the re-wiring of the cell to escape CDK4/6 dependence and turn to alternative pathways. Loss of retinoblastoma function, overexpression of CDK 6, upregulation of cyclin E, overexpression of CDK 7, and dysregulation of several signaling pathways, notably the PI3/AKT/mTOR pathway, have been implicated in the development of resistance to CDK4/6 inhibitors. Overlap with endocrine resistance mechanisms might be possible. Combinational therapeutic strategies should be explored in order to prevent resistance and optimize the management of patients after progression under CDK 4/6 inhibition.