Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,464 result(s) for "Cyclopentanes"
Sort by:
Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators
Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed “jasmonates.” As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed “death acids.” 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores includingAspergillus flavus, Fusarium verticillioides,andHelicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.
A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma
Summary Purpose The therapeutic index of proteasome inhibitors may be improved through selective inhibition of a sub-component of the ubiquitin-proteasome system, such as the NEDD8-conjugation pathway. This multicenter, phase I, dose-escalation study assessed safety and the maximum tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and antitumor activity of pevonedistat, an investigational NEDD8-activating enzyme (NAE) inhibitor, in patients with metastatic melanoma. Methods Patients received intravenous pevonedistat on Days 1, 4, 8, 11 (schedule A) or 1, 8, 15 (schedule B) of 21-day cycles. Results 26 patients received pevonedistat 50–278 mg/m 2 on schedule A; 11 patients received pevonedistat 157 mg/m 2 on schedule B. The schedule A MTD was 209 mg/m 2 : dose-limiting toxicities (DLTs) included grade 3 hypophosphatemia and grade 3 increased blood creatinine (associated with grade 3 hyperbilirubinemia). Two schedule A patients experienced acute organ failure toxicities, one of whom experienced grade 5 acute renal failure. Dose escalation did not occur in schedule B: DLTs included grade 3 myocarditis, grade 2 acute renal failure, and grade 2 hyperbilirubinemia in a single patient. Pevonedistat pharmacokinetics were approximately dose-proportional across the dose range studied, with a biphasic disposition profile characterized by a short elimination half-life (~10 h). Pharmacodynamic studies showed increases in NAE-regulated transcripts post-treatment; all post-dose biopsy samples were positive for pevonedistat-NEDD8 adduct. One schedule A patient achieved a partial response; 15 patients had stable disease (4 lasting ≥6.5 months). Conclusions Pevonedistat was generally well tolerated at the MTD. Anticipated pharmacodynamic effects of NAE inhibition were observed with single-agent pevonedistat in peripheral blood and tumor tissue.
Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade
Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1–JAZ–DELLA–PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.
Peramivir: A Review in Uncomplicated Influenza
Intravenous peramivir (Alpivab™; Rapivab ® ; Rapiacta ® ; PeramiFlu ® ), the most recent globally approved inhibitor of influenza neuraminidase, is indicated for the treatment of uncomplicated influenza in adults and children from the age of 2 years. This article, written from an EU perspective, reviews the clinical use of peramivir in this indication and summarizes its pharmacological properties. In large, randomized, double-blind, multicentre trials in previously healthy adults with uncomplicated influenza, a single infusion of peramivir 600 mg significantly shortened the median time to resolution of influenza symptoms compared with placebo and was noninferior to the recommended oseltamivir regimen in terms of this primary outcome. Albeit data are limited, results from a noncomparative phase 3 trial in paediatric patients (≈ 95% of whom were aged ≥ 2 years) with acute uncomplicated influenza receiving the recommended dose of peramivir were generally consistent with those in adults. Peramivir was generally well tolerated in children and adults participating in these clinical trials, with most adverse events of mild to moderate intensity. Given its simple single-dose regimen and with intravenous administration offering a potential advantage over oral administration in individuals with nausea, vomiting or having difficulty in swallowing, peramivir provides an additional option for treating uncomplicated influenza infection in adults and children from the age of 2 years.
Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor
Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3 R ,7 S )-jasmonoyl- l -isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved α-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs. Three-part receptor for jasmonate plant hormones The receptors for several important plant hormones have been identified in recent years, including those for auxin, the gibberellins and abscisic acid, and structure–function studies have revealed their mechanisms of action. Now the mechanism by which plant cells recognize the jasmonate phytohormones — key players in growth regulation, development and defence responses — is reported. The jasmonate receptor is a three-molecule complex consisting of the F-box protein COI1, a JAZ (JASMONATE ZIM DOMAIN) transcriptional repressor, and inositol pentakisphosphate. All three receptor components are required for high-affinity hormone binding. This system for jasmonate perception involves mechanisms that are distinct from those of the other plant hormones studied so far, although all depend on hormone-mediated protein interactions. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of the JASMONATE ZIM DOMAIN (JAZ) family of transcriptional repressors. These authors elucidate the mechanism of jasmonate perception. They present structural and pharmacological data to show that the true jasmonate receptor is a complex of both COI1 and JAZ. In addition, inositol pentakisphosphate functions as a critical component of the hormone receptor complex.
Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense
Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense.
Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior
Diverse life forms have evolved internal clocks enabling them to monitor time and thereby anticipate the daily environmental changes caused by Earth's rotation. The plant circadian clock regulates expression of about one-third of the Arabidopsis genome, yet the physiological relevance of this regulation is not fully understood. Here we show that the circadian clock, acting with hormone signals, provides selective advantage to plants through anticipation of and enhanced defense against herbivory. We found that cabbage loopers (Trichoplusia ni) display rhythmic feeding behavior that is sustained under constant conditions, and plants entrained in light/dark cycles coincident with the entrainment of the T. ni suffer only moderate tissue loss due to herbivory. In contrast, plants entrained out-of-phase relative to the insects are significantly more susceptible to attack. The in-phase entrainment advantage is lost in plants with arrhythmic clocks or deficient in jasmonate hormone; thus, both the circadian clock and jasmonates are required. Circadian jasmonate accumulation occurs in a phase pattern consistent with preparation for the onset of peak circadian insect feeding behavior, providing evidence for the underlying mechanism of clock-enhanced herbivory resistance. Furthermore, we find that salicylate, a hormone involved in biotrophic defense that often acts antagonistically to jasmonates, accumulates in opposite phase to jasmonates. Our results demonstrate that the plant circadian clock provides a strong physiological advantage by performing a critical role in Arabidopsis defense.
Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species- and Jasmonic Acid-Dependent Process in Arabidopsis
The plant cell wall is a dynamic and complex structure whose functional integrity is constantly being monitored and maintained during development and interactions with the environment. In response to cell wall damage (CWD), putatively compensatory responses, such as lignin production, are initiated. In this context, lignin deposition could reinforce the cell wall to maintain functional integrity. Lignin is important for the plant's response to environmental stress, for reinforcement during secondary cell wall formation, and for long-distance water transport. Here, we identify two stages and several components of a genetic network that regulate CWD-induced lignin production in Arabidopsis (Arabidopsis thaliana). During the early stage, calcium and diphenyleneiodonium-sensitive reactive oxygen species (ROS) production are required to induce a secondary ROS burst and jasmonic acid (JA) accumulation. During the second stage, ROS derived from the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D and lA-isoleucine generated by IASMONIC ACID RESISTANT1, form a negative feedback loop that can repress each other's production. This feedback loop in turn seems to influence lignin accumulation. Our results characterize a genetic network enabling plants to regulate lignin biosynthesis in response to CWD through dynamic interactions between JA and ROS.
Evaluation of Intravenous Peramivir for Treatment of Influenza in Hospitalized Patients
Seasonal influenza causes >200 000 annual hospitalizations in the United States. Current antiviral treatment options are limited to oral or inhaled agents. There is an urgent unmet need for intravenous antiviral treatments. Patients hospitalized with suspected influenza were randomized to 5-day treatment with intravenous peramivir (600 mg once daily) or placebo; all received the institution's standard of care (SOC) treatment. Time to clinical resolution and change in viral shedding in nasopharyngeal specimens were the primary and key secondary end points. Influenza infection was confirmed in 338 of 405 enrolled patients. At the time of a preplanned interim analysis, the primary efficacy analysis population comprised 121 patients who did not receive a concurrent neuraminidase inhibitor as part of the SOC. The median (95% confidence interval) time to clinical resolution was 42.5 (34.0-57.9) hours for peramivir versus 49.5 (40.0-61.9) hours for placebo (P = .97). A larger treatment effect was observed in patients with history of symptoms <48 hours or admitted to an intensive care unit. Greater reductions in viral shedding, based on median tissue culture infective dose, were observed in patients who received peramivir than in placebo recipients, although this difference was not statistically significant. The incidence and severity of adverse events and laboratory abnormalities were similar between the 2 treatment groups. The study was terminated for futility after a preplanned interim analysis. A significant clinical benefit was not demonstrated for peramivir plus SOC compared with placebo plus SOC. Peramivir was generally safe and well tolerated. These findings highlight the challenges in designing studies to evaluate influenza antiviral agents in a hospitalized setting. Clinical Trials Registration. NCT00958776.
Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor
Jasmonates play a number of diverse roles in plant defense and development. CORONATINE INSENSITIVE1 (COI1), an F-box protein essential for all the jasmonate responses, interacts with multiple proteins to form the SCFCOI¹ E3 ubiquitin ligase complex and recruits jasmonate ZIM-domain (JAZ) proteins for degradation by the 26S proteasome. To determine which protein directly binds to jasmonoyl-isoleucine (JA-Ile)/coronatine (COR) and serves as a receptor for jasmonate, we built a high-quality structural model of COI1 and performed molecular modeling of COI1-jasmonate interactions. Our results imply that COI1 has the structural traits for binding JA-Ile or COR. The direct binding of these molecules with COI1 was further examined using a combination of molecular and biochemical approaches. First, we used the immobilized jasmonate approach to show that the COI1 protein in crude leaf extracts can bind to the jasmonate moiety of JA-Ile. Second, we employed surface plasmon resonance technology with purified COI1 and JAZ1 protein to reveal the interaction among COI1, JA-Ile, and JAZ1. Finally, we used the photoaffinity labeling technology to show the direct binding of COR with purified insect-expressed COI1. Taken together, these results demonstrate that COI1 directly binds to JA-Ile and COR and serves as a receptor for jasmonate.