Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Cyclops scutifer"
Sort by:
Efficiency of crustacean zooplankton in transferring allochthonous carbon in a boreal lake
Increased incorporation of terrestrial organic matter (t-OM) into consumer biomass (allochthony) is believed to reduce growth capacity. In this study, we examined the relationship between crustacean zooplankton allochthony and production in a boreal lake that displays strong seasonal variability in t-OM inputs. Contrary to our hypotheses, we found no effect of allochthony on production at the community and the species levels. The high-frequency seasonal sampling (time-for-space) allowed for estimating the efficiency of zooplankton in converting this external carbon source to growth. From the daily t-OM inputs in the lake (57–3,027 kg C/d), the zooplankton community transferred 0.2% into biomass (0.01–2.36 kg C/d); this level was of the same magnitude as the carbon transfer efficiency for algal-derived carbon (0.4%). In the context of the boundless carbon cycle, which integrates inland waters as a biologically active component of the terrestrial landscape, the use of the time-for-space approach for the quantifying of t-OM trophic transfer efficiency by zooplankton is a critical step toward a better understanding of the effects of increasing external carbon fluxes on pelagic food webs.
Life histories and seasonal dynamics of common boreal pelagic copepods (Crustacea, Copepoda) inhabiting an oligotrophic Fennoscandian lake
The annual seasonal abundance and spatial distribution of four widespread pelagic copepods, the Palaeartic calanoid Eudiaptomus gracilis, the cyclopoids Mesocyclops leuckarti and Thermocyclops oithonoides, and the Holartic Cyclops scutifer were investigated in Lake Gjerstadvann, an oligotrophic boreal lake. Important ecological traits such as life cycles, pelagic microhabitats and wintering strategies varied strongly between the investigated copepods, and influenced seasonal succession in the plankton community. Fish predation did not seem to affect copepod abundances, except perhaps the two lage-sized, less abundant species, the Palaeartic calanoid Heterocope saliens and the Holartic cyclopoid Cyclops abyssorum. Life cycles varied from one (C. scutifer) to three (M. leuckarti and E. gracilis) complete generations per year, primarily related to habitat temperatures. Wintering took place as late instars (C. scutifer, C. abyssorum) or cop V and adults (E. gracilis) in the plankton, late instars in profundal (T. oithonoides) or littoral (M. leuckarti) sediment diapause, and embryonic diapause in sediment egg bank (H. saliens). C. scutifer and C. abyssorum exhibited delayed development in the profundal waters during winter, which could be characterised as so-called \"active diapause\". C. scutifer, T. oithonoides, and C. abyssorum in Lake Gjerstadvann were probably negatively affected by acidified waters. M. leuckarti seemed to be the most acid-tolerant of these species being able to endure pH slightly below 5.0, whereas T. oithonoides was usually absent at such pH levels. The calanoid species H. saliens and E. gracilis were extremely tolerant towards acidic environments. The yearly differences in population abundance as indicated by the fluctuations in the diapausing populations were probably due to environmental variations in water chemistry occurring during the most vulnerable ontogenetic stages, i.e., eggs and nauplii. Even if the pelagic ecosystem in boreal and oligotrophic lakes may appear homogeneous, a whole array of life histories and dormancy patterns has evolved among copepods.
Between-year variations in the development of crustacean zooplankton in the Norwegian subalpine lake, Oevre Heimdalsvatn
Data from the International Biological Programme (IBP) and subsequent studies have been re-analysed to test the two hypotheses which previously have been suggested concerning the zooplankton in the mountain lake, Oevre Heimdalsvatn: (1) the average temperature in June, more than other summer months, is affecting the growth rate and population densities of zooplankton in the lake, (2) the invasion of the European minnow (Phoxinus phoxinus) has caused changes in the zooplankton community. The analyses have demonstrated that the June temperature strongly affects the growth rate of all the zooplankton species, but that there is no relationship with the population maxima. The species composition in the crustacean zooplankton has not changed between 1969 and 1999, and any direct impact of the minnows on the zooplankton community could not be detected. Indirectly, the minnows may have reduced the density of invertebrate predators, and thus caused an increase in juvenile survival and increased summer maximum density of Bosmina longispina. The variation in density of the copepod, Cyclops scutifer, was correlated with the density of Heterocope saliens, most likely the result of predator-prey interactions.
Benthic Algae Support Zooplankton Growth during Winter in a Clear-Water Lake
We used stable carbon (5 13 C) and nitrogen (5 15 N) isotopes to assess the importance of benthic algae for the zooplankton individual growth in winter in a shallow, clear subarctic lake. The 8 13 C values of calanoid (Eudiaptomus graciloides) and cyclopoid (Cyclops scutifer) zooplankton in autumn suggest a food resource of pelagic origin during the ice-free period. The zooplankton 5 13 C values were high in spring compared to autumn. E. graciloides did not grow over winter and the change in 5 13 C was attributed to a decrease in lipid content during the winter. In contrast, the increase in 5 13 C values of C. scutifer over the winter was explained by their growth on organic carbon generated by benthic algae. The 8 15 N of the C. scutifer food resource during winter was low compared to 8 15 N of the benthic community, suggesting that organic matter generated by benthic algae was mainly channelled to zooplankton via 15 N-depleted heterotrophic bacteria. The results demonstrate that benthic algae can sustain zooplankton metabolic demands and growth during long winters, which, in turn, may promote zooplankton growth on pelagic resources during the summer. Such multi-chain omnivory challenges the view of zooplankton as mainly dependent on internal primary production and stresses the importance of benthic resources for the productivity of plankton food webs in shallow lakes.
Morphology and biology of Cyclops scutifer Sars, 1863 in high mountain lakes of East Siberia (including Lake Amut)
Data on zooplankton from 13 high-mountain lakes of East Siberia have shown that the Holarctic copepod Cyclops scutifer Sars, 1863 dominates among crustaceans. In July, its abundance comprised 64%–98% of the total plankton fauna in the pelagial of these lakes, approximately 30% in the littoral zone and 10% in small northern thermokarst lakes. Biometric measurements and morphological descriptions based on scanning microscope images are supplemented by the data on its geographic distribution and phenology.
Selective predation on zooplankton by pelagic Arctic charr, Salvelinus alpinus, in six subarctic lakes
Selective predation by planktivore fish appears to be an important regulatory factor of zooplankton communities, potentially causing large changes in species composition and size distributions within populations. In this study, prey preferences and size-selective predation on zooplankton by Arctic charr were examined in six subarctic lakes with Arctic charr as the dominant pelagic fish species. Most of the lakes had a zooplankton community dominated by copepods (Cyclops scutifer and Eudiaptomus graciloides), but the pelagic charr evidently selected cladoceran species (Bythotrephes longimanus, Daphnia sp. and Bosmina sp.), likely because the copepods have a higher mobility and evasiveness than the cladocerans. Furthermore, a strong size selection was also revealed for both Bosmina sp. and Daphnia sp., as individual prey from Arctic charr stomachs were exclusively larger than individuals sampled in the environment. Additionally, visibility due to size, morphology and pigmentation (egg-carrying females) was also a major factor for the selection of zooplankton prey. In conclusion, Arctic charr was found to be highly selective on zooplankton both in respect to species composition and individual size of Bosmina sp. and Daphnia sp.
Planktonic copepods reacting selectively to hydrodynamic disturbances
In the water column, planktonic copepods encounter small-scale hydrodynamic disturbances generated by fellow zooplankters. Our question is whether or not the copepods can distinguish between hydrodynamic disturbances created by predators, prey, conspecifics and/or mates. We used a Schlieren optical system with a density gradient in the water volume and filmed at 48 frames per second to record the behaviour of copepods during encounters with an artificial hydrodynamic disturbance. We observed the reactions of Cyclops scutifer and Epischura nordenskioldi towards disturbances of different strengths. We also re-examined an earlier report on tandem swimming in C. scutifer while attempting to mate, using novel mathematical tools to analyse possible correlations between the two mates. We conclude that the information within the hydrodynamic disturbances created by swimming zooplankters has enough content for differentiated reactions. We also suggest that the adaptive value of tandem swimming during mating results in offspring capable of executing escape reactions comparable in strength to the disturbances.
Zooplankton in Lake Atnsjøen 1985–1997
Issue Title: The Atna River: Studies in an Alpine-Boreal Watershed The aim of this paper is to study long-term changes in the zooplankton of a subalpine locality unaffected by direct anthropogenic disturbances. The material has been collected during the period 1985-1997; since 1988 a standardised sampling program has been followed, with five sampling dates during the ice free period (June-October) at three fixed stations. Altogether 17 species of Rotatoria, 9 species of Copepoda and 11 species of Cladocera were recorded. Of these 10 species of Rotatoria, two species of Copepoda and five species of Cladocera occur regularly in the plankton. Polyarthra vulgaris dominate among the rotifers together with Kellicottia longispina and Conochilus unicornis. The crustacean community is dominated by the copepod Cyclops scutifer, and the cladocerans Bosmina longispina, Holopedium gibberum and Daphnia longispina. The cladocerans Bythotrephes longimanus, Polyphemus pediculus,and the copepodsArctodiaptomus laticeps and Heterocope saliens all occur regularly, but at low densities. The zooplankton density is low in May/June and peaks in August and September, but the timing of maximum densities varies from year to year. By numbers, the rotifers strongly dominate with densities 10-15 times higher than the crustaceans. The annual maximum density (rotifers plus crustaceans) ranged from 50 ind. l^sup -1^ (1985, 1988) to 450 ind. l^sup -1^ (1995). Mean density is about 140-150 ind. l^sup -1^. By biomass (dry weight), the cladocerans constitute 60%, while the copepods and rotifers constitute 30% and 10% of the zooplankton, respectively. The annual maximum has varied between 70 and 260 μg dw l^sup -1^, with 170 μg dw l^sup -1^ as the mean level. C. scutifer usually has a one-year lifecycle without diapause, but a small fraction of the population has a two-year lifecycle. The life cycle in 1989 and 1990 differed strongly from the other years. The life cycles of B. longispina, D. longispina and possibly also H. gibberum and A. laticeps, indicate two generations during the summer. H. gibberumandH. saliens pass the winter as resting eggs. The other crustacean species, except C. scutifer, pass the winter mainly as resting eggs, but all have a small winter population in the water mass. C. scutifer is the only species without resting eggs. The vertical distribution normally shows highest density between 5 and 10 m depth. However, during some periods maximum density is observed close to the surface, while at other times it is seen deep in the hypolimnion. The vertical distribution is most pronounced when the thermocline is sharp, and less pronounced during the full circulation in autumn. The vertical migration may also be pronounced, especially in B. longispina, with high density near the surface during the night. The vertical migration is less pronounced among the rotifers and copepods. The degree of vertical migration varies with temperature and food conditions. There is little variation from year to year in species composition, but large variation in species dominance, seasonal development, population density, and vertical and horizontal distribution during the sampling period. Variations in temperature, food condition, predation, and water through-flow are possible causes for the observed differences between the years. Input of allochthonous material is especially important. However, no clear correlation have been found between the development of the plankton community and these environmental factors. Hence, these interactions are complex and multifactorial.[PUBLICATION ABSTRACT]
Life cycles of the freshwater, planktonic copepod Cyclops scutifer Sars on a north-south gradient in North America
A seasonal cycle longer than one year is exceptional both among marine and freshwater zooplankton, but occurs widely in the freshwater cyclopoid Cyclops scutiferSars. This paper presents the life cycle of this species in eight North American populations in lakes from 42° to 69° N. Five of the populations had life cycles showing a combination of a one and two year cycle. Two populations had a 1-year cycle, and the southernmost had a combination of a 0.5-year and a 1-year cycle. Lengths of cycles increased with latitude and thus inversely with the temperature. Populations in all lakes were divided into a direct and a delayed line of development. Diapause was not documented in any of the lakes. [PUBLICATION ABSTRACT]
Size-dependent habitat choice in Daphnia galeata Sars and size-structured interactions among zooplankton in a subarctic lake (lake Lombola, Norway)
Seasonal changes in vertical distribution of Daphnia galeata and other zooplankters were monitored in lake Lombola (69° 07′ N). Depth-habitat use, availability of edible algae and zooplankton densities were recorded to examine seasonal changes in intensity of competition between Daphnia and the other herbivores in the lake. Early in July, the exephippial generation of Daphnia aggregated near the surface, independently of body-size. In late July, when fish planktivory was expected to increase, the daphnids moved down during the day. In August, as intraspecific competition for food intensified, small and large Daphnia partitioned the water column, with larger individuals staying deeper. In September, Daphnia became dominated by large individuals, edible phytoplankton reached the seasonal minimum, and the vertical distribution of Daphnia gradually stretched out towards the surface. The observations on food availability and zooplankton densities suggest that interspecific competition intensified by the end of July. Species and stages that were most exposed to exploitative and interference competition by Daphnia were those staying deeper, because their vertical distribution overlapped more with the larger, competitively superior daphnids. These susceptible competitors included Keratella cochlearis and Synchaeta, among the rotifers, and nauplii and early copepodite stages of Cyclops scutifer. Depth-habitat use is discussed in relation to copepod development, zooplankton dynamics and predator-mediated coexistence.[PUBLICATION ABSTRACT]