Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
73
result(s) for
"Cycloserine - chemistry"
Sort by:
d-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition
by
de Chiara, Cesira
,
Garza-Garcia, Acely
,
Homšak, Miha
in
631/535/1266
,
631/92/173
,
631/92/2783
2020
The broad-spectrum antibiotic
d
-cycloserine (DCS) is a key component of regimens used to treat multi- and extensively drug-resistant tuberculosis. DCS, a structural analog of
d
-alanine, binds to and inactivates two essential enzymes involved in peptidoglycan biosynthesis, alanine racemase (Alr) and
d
-Ala:
d
-Ala ligase. Inactivation of Alr is thought to proceed via a mechanism-based irreversible route, forming an adduct with the pyridoxal 5′-phosphate cofactor, leading to bacterial death. Inconsistent with this hypothesis,
Mycobacterium tuberculosis
Alr activity can be detected after exposure to clinically relevant DCS concentrations. To address this paradox, we investigated the chemical mechanism of Alr inhibition by DCS. Inhibition of
M. tuberculosis
Alr and other Alrs is reversible, mechanistically revealed by a previously unidentified DCS-adduct hydrolysis. Dissociation and subsequent rearrangement to a stable substituted oxime explains Alr reactivation in the cellular milieu. This knowledge provides a novel route for discovery of improved Alr inhibitors against
M. tuberculosis
and other bacteria.
d
-Cycloserine inactivates alanine racemase by forming an adduct with the pyridoxal 5′-phosphate cofactor, but structural and spectroscopic analyses reveal that reactivation occurs on adduct hydrolysis and product rearrangement to a stable oxime.
Journal Article
Unraveling Comparative Anti-Amyloidogenic Behavior of Pyrazinamide and D-Cycloserine: A Mechanistic Biophysical Insight
by
Qadeer, Atiyatul
,
Khan, Javed Masood
,
Chaturvedi, Sumit Kumar
in
Agglomeration
,
Albumen
,
Alzheimer Disease - drug therapy
2015
Amyloid fibril formation by proteins leads to variety of degenerative disorders called amyloidosis. While these disorders are topic of extensive research, effective treatments are still unavailable. Thus in present study, two anti-tuberculosis drugs, i.e., pyrazinamide (PYZ) and D-cycloserine (DCS), also known for treatment for Alzheimer's dementia, were checked for the anti-aggregation and anti-amyloidogenic ability on Aβ-42 peptide and hen egg white lysozyme. Results demonstrated that both drugs inhibit the heat induced aggregation; however, PYZ was more potent and decelerated the nucleation phase as observed from various spectroscopic and microscopic techniques. Furthermore, pre-formed amyloid fibrils incubated with these drugs also increased the PC12/SH-SY5Y cell viability as compare to the amyloid fibrils alone; however, the increase was more pronounced for PYZ as confirmed by MTT assay. Additionally, molecular docking study suggested that the greater inhibitory potential of PYZ as compare to DCS may be due to strong binding affinity and more occupancy of hydrophobic patches of HEWL, which is known to form the core of the protein fibrils.
Journal Article
Mechanism of D-Cycloserine Inhibition of D-Amino Acid Transaminase from Haliscomenobacter hydrossis
2023
D-cycloserine inhibits pyridoxal-5′-phosphate (PLP)-dependent enzymes. Inhibition effect depend on organization of the active site and mechanism of the catalyzed reaction. D-cycloserine interacts with the PLP form of the enzyme similarly to the substrate (amino acid), and this interaction is predominantly reversible. Several products of the interaction of PLP with D-cycloserine are known. For some enzymes formation of a stable aromatic product – hydroxyisoxazole-pyridoxamine-5′-phosphate at certain pH – leads to irreversible inhibition. The aim of this work was to study the mechanism of D-cycloserine inhibition of the PLP-dependent D-amino acid transaminase from Haliscomenobacter hydrossis. Spectral methods revealed several products of interaction of D-cycloserine with PLP in the active site of transaminase: oxime between PLP and β-aminooxy-D-alanine, ketimine between pyridoxamine-5′-phosphate and cyclic form of D-cycloserine, and pyridoxamine-5′-phosphate. Formation of hydroxyisoxazole-pyridoxamine-5′-phosphate was not observed. 3D structure of the complex with D-cycloserine was obtained using X-ray diffraction analysis. In the active site of transaminase, a ketimine adduct between pyridoxamine-5′-phosphate and D-cycloserine in the cyclic form was found. Ketimine occupied two positions interacting with different active site residues via hydrogen bonds. Using kinetic and spectral methods we have shown that D-cycloserine inhibition is reversible, and activity of the inhibited transaminase from H. hydrossis could be restored by adding excess of keto substrate or excess of cofactor. The obtained results confirm reversibility of the inhibition by D-cycloserine and interconversion of various adducts of D-cycloserine and PLP.
Journal Article
Determination of d-Cycloserine Impurities in Pharmaceutical Dosage Forms: Comparison of the International Pharmacopoeia HPLC–UV Method and the DOSY NMR Method
by
Švab, Živa
,
Makuc, Damjan
,
Plavec, Janez
in
Chemistry, Pharmaceutical - methods
,
Chromatography
,
Chromatography, High Pressure Liquid - methods
2020
d-cycloserine is a broad-spectrum antibiotic that is currently being used as a secondary choice in the treatment of tuberculosis. In recent years, it has become more popular, due to its effect on the nervous system. In this current study, we provide evidence that The International Pharmacopoeia HPLC–UV method for d-cycloserine impurity profiling is not repeatable due to the variable response of cycloserine dimer, one of d-cycloserine impurities. Therefore, we introduced the DOSY (diffusion ordered spectroscopy) NMR (nuclear magnetic resonance) technique to determine the levels of d-cycloserine impurities in pharmaceutical dosage forms. The DOSY NMR technique allowed separation of d-cycloserine, its degradation products, and key process impurities in concentrations below pharmacopoeial specification limits. The proposed DOSY NMR method allowed accurate identification and quantification of the cycloserine dimer, which was not possible through the use of the pharmacopoeial HPLC method. The current method has the potential for practical use in analytical laboratories of the pharmaceutical industry.
Journal Article
A simplified LC−MS/MS method for rapid determination of cycloserine in small-volume human plasma using protein precipitation coupled with dilution techniques to overcome matrix effects and its application to a pharmacokinetic study
by
Di, Xin
,
Wang, Xin
,
Jin, Jing
in
Analysis
,
Analytical Chemistry
,
Antibiotics, Antitubercular - blood
2017
Matrix effects have been a major concern when developing LC−MS/MS methods for quantitative bioanalysis of cycloserine. Sample handling procedures including solid phase extraction or derivatization have been reported previously by researchers to overcome matrix effects of cycloserine. In the present study, the possibility of reducing matrix effects of cycloserine using protein precipitation coupled with dilution techniques was investigated. Plasma samples were pretreated by protein precipitation with methanol followed by a 40-fold dilution with methanol–water (50:50,
v
/
v
). The analyte and the internal standard (mildronate) were chromatographed on a Shim-pack XR-ODS (100 mm × 2.0 mm, 2.2 μm) column using methanol–0.01% formic acid (70:30,
v/v
) as mobile phase and detected by multiple reaction monitoring mode via positive electrospray ionization. The total run time was only 2 min per sample. The suppression of cycloserine response was reduced with the matrix effects ranging between 80.5 and 87.9%. A lower limit of quantification (LLOQ) of 0.300 μg/mL was achieved using only 10 μL of plasma. The intra- and inter-day precisions were less than 4.8% and the accuracy ranged from −2.6 to 6.6%. The method was successfully applied to a pharmacokinetic study of cycloserine in 30 healthy Chinese male subjects after oral administration of a single dose of cycloserine at 250, 500 and 750 mg under fasting conditions. The newly developed method is simpler, faster, cost-effective, and more robust than previously reported LC-MS/MS methods.
Journal Article
Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis
2016
The cell wall of
Mycobacterium tuberculosis
(Mtb) consists of peptidoglycan, arabinogalactan and mycolic acids. The cytoplasmic steps in the peptidoglycan biosynthetic pathway, catalyzed by the Mur (A-F) enzymes, involve the synthesis of UDP-n-acetylmuramyl pentapeptide, a key precursor molecule required for the formation of the peptidoglycan monomeric building blocks. Mur enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be promising Mtb drug targets. However, the caveat is that most of the current assays utilize a single Mur enzyme, thereby identifying inhibitors against only one of the enzymes. Here, we report development of a one-pot assay that reconstructs the entire Mtb Mur pathway
in vitro
and has the advantage of eliminating the requirement for nucleotide intermediates in the pathway as substrates. The MurA-MurF enzymes were purified and a one-pot assay was developed through optimization of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate. The assay is biochemically characterized and optimized for high-throughput screening of molecules that could disrupt multiple targets within the pathway. Furthermore, we have validated the assay by performing it to identify D-Cycloserine and furan-based benzene-derived compounds with known Mur ligase inhibition as inhibitors of Mtb MurE and MurF.
Journal Article
A Point Mutation in cycA Partially Contributes to the D-cycloserine Resistance Trait of Mycobacterium bovis BCG Vaccine Strains
by
Chen, Jeffrey M.
,
Uplekar, Swapna
,
Gordon, Stephen V.
in
Alanine
,
Amino Acid Sequence
,
Amino Acid Transport Systems, Neutral - chemistry
2012
In mycobacteria, CycA a D-serine, L- and D-alanine, and glycine transporter also functions in the uptake of D-cycloserine, an important second-line anti-tubercular drug. A single nucleotide polymorphism identified in the cycA gene of BCG was hypothesized to contribute to the increased resistance of Mycobacterium bovis bacillus Calmette-Guérin (BCG) to D-cycloserine compared to wild-type Mycobacterium tuberculosis or Mycobacterium bovis. Working along these lines, a merodiploid strain of BCG expressing Mycobacterium tuberculosis CycA was generated and found to exhibit increased susceptibility to D-cycloserine albeit not to the same extent as wild-type Mycobacterium tuberculosis or Mycobacterium bovis. In addition, recombinant Mycobacterium smegmatis strains expressing either Mycobacterium tuberculosis or Mycobacterium bovis CycA but not BCG CycA were rendered more susceptible to D-cycloserine. These findings support the notion that CycA-mediated uptake in BCG is impaired as a result of a single nucleotide polymorphism; however, the partial contribution of this impairment to D-cycloserine resistance suggests the involvement of additional genetic lesions in this phenotype.
Journal Article
Kinetic basis of partial agonism at NMDA receptors
by
Kussius, Cassandra L
,
Popescu, Gabriela K
in
Action Potentials - drug effects
,
Agonists (Biochemistry)
,
Alanine - chemistry
2009
The authors propose a mechanism of partial agonism, showing that partial agonists of both GluN1 and GluN2 NMDA receptor subunits have similar effects on the NMDA receptor activation reaction and they increase the height of all energy barriers during NMDA receptor activation. This contrasts with the localized effects observed for pentameric ligand-gated channels.
Activation of ligand-gated channels is initiated by the binding of small molecules at extracellular sites and culminates with the opening of a membrane-embedded pore. To investigate how perturbations at ligand-binding domains influence the gating reaction, we examined current traces recorded from individual NMDA receptors in the presence of several subunit-specific partial agonists. We found that low-efficacy agonists acting at either the glycine-binding or the glutamate-binding NMDA receptor subunits had very similar effects on the receptor's activation reaction, possibly reflecting a high degree of coupling between the two subunit types during gating. In addition, we found that partial agonists increased the height of all energy barriers encountered by NMDA receptors during activation. This result stands in sharp contrast to the localized effects that have been observed for pentameric ligand-gated channels and may represent a previously unknown mechanism by which partial agonists reduce receptor activity.
Journal Article
Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site
by
Lench, Alex M.
,
Robson, Emma
,
Jones, Roland S. G.
in
Algorithms
,
Alzheimer's disease
,
Amino acids
2015
Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.
Journal Article