Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
638
result(s) for
"Cyprinodontiformes"
Sort by:
The evolution of the placenta drives a shift in sexual selection in livebearing fish
2014
In poeciliid fish, the evolution of the placenta is associated with polyandry in females and correlates with a suite of phenotypic and behavioural traits in males.
Consequences of placenta evolution
Females laying eggs for external fertilization have no control over the quality of the offspring, and must rely on proxies of male quality such as courtship and display traits. Evolutionary theory holds that all this changed with the advent of the placenta: with low-cost eggs incubated internally, a mother can hedge her bets, inspecting the genetic quality of her mates directly and provisioning her embryos accordingly. The resulting mother–offspring conflict is expected to lead to polyandry (females mating with multiple males) and to males that are smaller, less showy and more prone to opportunistic or 'sneaky' mating. Here Bart Pollux
et al
. test these ideas by looking at the Poecilidae — guppies and their relatives — a family of fish in which the various species show all varieties of internal and external fertilization, and in which the placenta has evolved at least eight times independently. This approach allows the authors to confirm that the evolution of the placenta is associated with polyandry in females, and smaller, less showy males that have longer penises to facilitate more opportunities for opportunistic mating.
The evolution of the placenta from a non-placental ancestor causes a shift of maternal investment from pre- to post-fertilization, creating a venue for parent–offspring conflicts during pregnancy
1
,
2
,
3
,
4
. Theory predicts that the rise of these conflicts should drive a shift from a reliance on pre-copulatory female mate choice to polyandry in conjunction with post-zygotic mechanisms of sexual selection
2
. This hypothesis has not yet been empirically tested. Here we apply comparative methods to test a key prediction of this hypothesis, which is that the evolution of placentation is associated with reduced pre-copulatory female mate choice. We exploit a unique quality of the livebearing fish family Poeciliidae: placentas have repeatedly evolved or been lost, creating diversity among closely related lineages in the presence or absence of placentation
5
,
6
. We show that post-zygotic maternal provisioning by means of a placenta is associated with the absence of bright coloration, courtship behaviour and exaggerated ornamental display traits in males. Furthermore, we found that males of placental species have smaller bodies and longer genitalia, which facilitate sneak or coercive mating and, hence, circumvents female choice. Moreover, we demonstrate that post-zygotic maternal provisioning correlates with superfetation, a female reproductive adaptation that may result in polyandry through the formation of temporally overlapping, mixed-paternity litters. Our results suggest that the emergence of prenatal conflict during the evolution of the placenta correlates with a suite of phenotypic and behavioural male traits that is associated with a reduced reliance on pre-copulatory female mate choice.
Journal Article
Convergent evolution of alternative developmental trajectories associated with diapause in African and South American killifish
by
Furness, Andrew I.
,
Meredith, Robert W.
,
Springer, Mark S.
in
Adaptation
,
Adaptation, Physiological
,
Animals
2015
Annual killifish adapted to life in seasonally ephemeral water-bodies exhibit desiccation resistant eggs that can undergo diapause, a period of developmental arrest, enabling them to traverse the otherwise inhospitable dry season. Environmental cues that potentially indicate the season can govern whether eggs enter a stage of diapause mid-way through development or skip this diapause and instead undergo direct development. We report, based on construction of a supermatrix phylogenetic tree of the order Cyprinodontiformes and a battery of comparative analyses, that the ability to produce diapause eggs evolved independently at least six times within African and South American killifish. We then show in species representative of these lineages that embryos entering diapause display significant reduction in development of the cranial region and circulatory system relative to direct-developing embryos. This divergence along alternative developmental pathways begins mid-way through development, well before diapause is entered, during a period of purported maximum developmental constraint (the phylotypic period). Finally, we show that entering diapause is accompanied by a dramatic reduction in metabolic rate and concomitant increase in long-term embryo survival. Morphological divergence during the phylotypic period thus allows embryos undergoing diapause to conserve energy by shunting resources away from energetically costly organs thereby increasing survival chances in an environment that necessitates remaining dormant, buried in the soil and surrounded by an eggshell for much of the year. Our results indicate that adaptation to seasonal aquatic environments in annual killifish imposes strong selection during the embryo stage leading to marked diversification during this otherwise conserved period of vertebrate development.
Journal Article
PHYLOGENOMICS REVEALS EXTENSIVE RETICULATE EVOLUTION IN XIPHOPHORUS FISHES
by
Schumer, Molly
,
Walter, Ronald
,
Rosenthal, Gil G.
in
Animal reproduction
,
Animal species
,
Animals
2013
Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges. Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high-confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a long-standing controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus.
Journal Article
Adaptation in a variable environment: Phenotypic plasticity and bet-hedging during egg diapause and hatching in an annual killifish
by
Lee, Kevin
,
Furness, Andrew I.
,
Reznick, David N.
in
Adaptation, Physiological - physiology
,
Animal behavior
,
Animals
2015
Two ways in which organisms adapt to variable environments are phenotypic plasticity and bet-hedging. Theory suggests that bet-hedging is expected to evolve in unpredictable environments for which reliable cues indicative of future conditions (or season length) are lacking. Alternatively, if reliable cues exist indicating future conditions, organisms will be under selection to produce the most appropriate phenotype—that is, adaptive phenotypic plasticity. Here, we experimentally test which of these modes of adaptation are at play in killifish that have evolved an annual life cycle. These fish persist in ephemeral pools that completely dry each season through the production of eggs that can remain in developmental arrest, or diapause, buried in the soil, until the following rainy season. Consistent with diversified bet-hedging (a risk spreading strategy), we demonstrate that the eggs of the annual killifish Nothobranchius furzeri exhibit variation at multiple levels—whether or not different stages of diapause are entered, for how long diapause is entered, and the timing of hatching—and this variation persists after controlling for both genetic and environmental sources of variation. However, we show that phenotypic plasticity is also present in that the proportion of eggs that enter diapause is influenced by environmental factors (temperature and light level) that vary seasonally. In nature there is typically a large parameter zone where environmental cues are somewhat correlated with seasonality, but not perfectly so, such that it may be advantageous to have a combination of both bet-hedging and plasticity.
Journal Article
Twenty-Four Years in the Mud: What Have We Learned About the Natural History and Ecology of the Mangrove Rivulus, Kryptolebias marmoratus?
2012
Although first described in 1880, Kryptolebias marmoratus avoided scientific scrutiny until 1961, when it was identified as the only known selfing hermaphroditic vertebrate. The subsequent intense interest in this fish as a laboratory animal, continuing to this day, might explain the paucity of wild collections, but our collective knowledge now suggests that the inherent difficulty of wild collection is more a matter of “looking in all the wrong places.” Long thought to be rare in the mangroves, and it is rare in certain human-impacted habitats, K. marmoratus can be quite abundant, but in microhabitats not typically targeted by ichthyologists: ephemeral pools at higher elevations in the swamp, crab burrows, and other fossorial or even terrestrial haunts. Field studies of this enigmatic fish have revealed almost amphibious behaviors. During emersion these fish tolerate extended dry periods. In water, they are exposed to temperature extremes, high levels of hydrogen sulfide, and depleted dissolved oxygen. Finally, their catholic diet and a geographically variable sex life completes a portrait of an unusual animal. A clearer picture is emerging of adult life, with initial population density estimates now known and some indication of high population turnover in burrows, but juvenile habitat and adult oviposition sites remain unknown.
Journal Article
The origin and biogeographic diversification of fishes in the family Poeciliidae
by
Furness, Andrew I.
,
Meredith, Robert W.
,
Springer, Mark S.
in
Analysis
,
Animals
,
Biodiversity
2017
The fish subfamily Poeciliinae (sensu Parenti, 1981) is widely distributed across the Western Hemisphere and a dominant component of the fish communities of Central America. Poeciliids have figured prominently in previous studies on the roles of dispersal and vicariance in shaping current geographic distributions. Most recently, Hrbek et al. combined a DNA-based phylogeny of the family with geological models to provide a biogeographic perspective that emphasized the role of both vicariance and dispersal. Here we expand on that effort with a database enlarged in the quantity of sequence represented per species, in the number of species included, and in an enlarged and more balanced representation of the order Cyprinodontiformes. We combine a robust timetree based upon multiple fossil calibrations with enhanced biogeographic analyses that include ancestral area reconstructions to provide a detailed biogeographic history of this clade. Key features of our results are that the family originated in South America, but its major diversification dates to a later colonization of Central America. We also resolve additional colonizations among South, Central and North America and the Caribbean and consider how this reconstruction contributes to our understanding of the mechanisms of dispersal.
Journal Article
Genomes of the Orestias pupfish from the Andean Altiplano shed light on their evolutionary history and phylogenetic relationships within Cyprinodontiformes
by
Maass, Alejandro
,
Valladares, Moisés A.
,
Montecino, Martin
in
Analysis
,
Animal Genetics and Genomics
,
Animals
2024
Background
To unravel the evolutionary history of a complex group, a comprehensive reconstruction of its phylogenetic relationships is crucial. This requires meticulous taxon sampling and careful consideration of multiple characters to ensure a complete and accurate reconstruction. The phylogenetic position of the
Orestias
genus has been estimated partly on unavailable or incomplete information. As a consequence, it was assigned to the family Cyprindontidae, relating this Andean fish to other geographically distant genera distributed in the Mediterranean, Middle East and North and Central America. In this study, using complete genome sequencing, we aim to clarify the phylogenetic position of
Orestias
within the Cyprinodontiformes order.
Results
We sequenced the genome of three
Orestias
species from the Andean Altiplano. Our analysis revealed that the small genome size in this genus (~ 0.7 Gb) was caused by a contraction in transposable element (TE) content, particularly in DNA elements and short interspersed nuclear elements (SINEs). Using predicted gene sequences, we generated a phylogenetic tree of Cyprinodontiformes using 902 orthologs extracted from all 32 available genomes as well as three outgroup species. We complemented this analysis with a phylogenetic reconstruction and time calibration considering 12 molecular markers (eight nuclear and four mitochondrial genes) and a stratified taxon sampling to consider 198 species of nearly all families and genera of this order. Overall, our results show that phylogenetic closeness is directly related to geographical distance. Importantly, we found that
Orestias
is not part of the Cyprinodontidae family, and that it is more closely related to the South American fish fauna, being the Fluviphylacidae the closest sister group.
Conclusions
The evolutionary history of the
Orestias
genus is linked to the South American ichthyofauna and it should no longer be considered a member of the Cyprinodontidae family. Instead, we submit that
Orestias
belongs to the Orestiidae family, as suggested by Freyhof et al. (2017), and that it is the sister group of the Fluviphylacidae family, distributed in the Amazonian and Orinoco basins. These two groups likely diverged during the Late Eocene concomitant with hydrogeological changes in the South American landscape.
Journal Article
Genomic data support the taxonomic validity of Middle American livebearers Poeciliopsis gracilis and Poeciliopsis pleurospilus (Cyprinodontiformes: Poeciliidae)
by
Khakurel, Basanta
,
Wright, April M.
,
Piller, Kyle R.
in
Animals
,
Biogeography
,
Biology and Life Sciences
2022
Poeciliopsis (Cyprinodontiformes: Poeciliidae) is a genus comprised of 25 species of freshwater fishes. Several well-known taxonomic uncertainties exist within the genus, especially in relation to the taxonomic status of Poeciliopsis pleurospilus and P . gracilis . However, to date, no studies have been conducted to specifically address the taxonomic status of these two species. The goal of this study was to examine the taxonomic validity of P . pleurospilus and P . gracilis using genomic data (ddRADseq) in phylogenetic, population genetic, and species delimitation frameworks. Multiple analyses support the recognition of both taxa as distinct species and also permits us to revise their respective distributions. A species delimitation analysis indicates that P . pleurospilus and P . gracilis are distinct species, each of which consists of two distinct lineages that are geographically structured. Phylogenetic and population genetic analyses provide clear evidence that individuals of P . gracilis are distributed north and west of the Isthmus of Tehuantepec in both Pacific and Atlantic river systems in Mexico, whereas individuals of P . pleurospilus are distributed in both Atlantic and Pacific river systems south and east of the Isthmus of Tehuantepec, from southern Mexico to Honduras.
Journal Article
Nothobranchius furzeri, an 'instant' fish from an ephemeral habitat
2019
The turquoise killifish, Nothobranchius furzeri, is a promising vertebrate model in ageing research and an emerging model organism in genomics, regenerative medicine, developmental biology and ecotoxicology. Its lifestyle is adapted to the ephemeral nature of shallow pools on the African savannah. Its rapid and short active life commences when rains fill the pool: fish hatch, grow rapidly and mature in as few as two weeks, and then reproduce daily until the pool dries out. Its embryos then become inactive, encased in the dry sediment and protected from the harsh environment until the rains return. This invertebrate-like life cycle (short active phase and long developmental arrest) combined with a vertebrate body plan provide the ideal attributes for a laboratory animal.
Journal Article
Phylogenetic Comparative Methods on Phylogenetic Networks with Reticulations
by
Kriebel, Ricardo
,
Solís-Lemus, Claudia
,
Bastide, Paul
in
Algorithms
,
analysis of variance
,
Animals
2018
The goal of phylogenetic comparative methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species’ traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel’s λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a data set of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.
Journal Article