Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
165 result(s) for "Cystitis - physiopathology"
Sort by:
The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis
The pathogenesis of bladder pain syndrome/interstitial cystitis (BPS/IC) is currently unclear. However, inflammation has been suggested to play an important role in BPS/IC. JNK downstream signaling plays an important role in numerous chronic inflammatory diseases. However, studies of the JNK pathway in BPS/IC are limited. In this study, we investigated the role of the JNK pathway in human BPS/IC and rat protamine sulfate (PS)-induced cystitis and examined the effect of the selective JNK inhibitor SP600125 on rat bladder cystitis. In our study, we demonstrated that the JNK signaling pathway was activated (the expression of JNK, c-Jun, p-JNK, p-c-Jun, IL-6 and TNF-α were significantly increasing in BPS/IC compared to the non-BPS/IC patients) and resulted in inflammation in human BPS/IC. Further animal models showed that the JNK pathway played an important role in the pathogenesis of cystitis. JNK inhibitors, SP600125, effectively inhibited the expression of p-JNK, p-c-Jun, IL-6 and TNF-α. The inhibition of these pathways had a protective effect on PS-induced rat cystitis by significantly decreasing histological score and mast cell count and improving bladder micturition function (micturition frequency significantly decreasing and bladder capacity significantly increasing). Therefore, JNK inhibition could be used as a potential treatment for BPS/IC.
Gabapentin reduces painful bladder hypersensitivity in rats with lipopolysaccharide‐induced chronic cystitis
Although interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition causing bladder pain and urinary symptoms, effective treatments have not been established. The aim of this study was to adapt a chronic cystitis model in rats using lipopolysaccharide (LPS), which reflects IC/BPS pathology, and characterize the model's histological and behavioral effects. Furthermore, we investigated the effect of an α2δ subunit ligand, gabapentin (GBP), on bladder hypersensitivity of rats with chronic cystitis. Cystitis models were created by repeated intravesical injections of LPS. In the histological examination, the LPS‐injected group had greater inflammatory response, fibrosis, and abnormally thick re‐epithelialization. In the LPS‐injected group, LPS prompted hyperalgesia in both the lower abdomen and hind paw regions after day 1 of the first injection compared with the saline‐injected controls, without any recovery for 21 days at least. During cystometry, the LPS‐injected group showed bladder hyperactivity at all times. Systemic administration of GBP reduced cystitis‐related pain due to chronic inflammation and reduced the increased frequency of voiding in the LPS‐injected group. These results suggest that repeated intravesical injections of LPS induce long‐lasting bladder inflammation, pain, and overactivity in rats, while GBP is effective in the management of those symptoms in this chronic cystitis model. The current study identifies a relatively simple method to develop an animal model for chronic cystitis and provides evidence that GBP may be an effective treatment option for patients with IC/BPS. This study shows the repeated intravesical injections of lipopolysaccharide (LPS) could be used to generate a model of chronic cystitis in rats, which show signs of long‐lasting bladder inflammation, pain, and overactivity. Gabapentin, a neuromodulator, effectively inhibited bladder pain and overactivity in the LPS‐induced chronic cystitis rats.
Reducing pain by improving brain and muscle activity with motor cortical neuromodulation in women with interstitial cystitis/bladder pain syndrome: a study protocol for a randomized controlled trial
Introduction Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain condition creating a wide range of urologic and pain symptoms. There is currently limited evidence to understand the mechanisms of IC/BPS. There have been recent studies suggesting that altered function in brain motor areas, particularly the supplementary motor cortex (SMA), relates to altered bladder sensorimotor control and may play an important role in IC/BPS. This study aims to provide evidence that non-invasive stimulation targeting the motor cortex may help reduce IC/BPS pain, as well as better understand the neural mechanism by which this stimulation targets neuromuscular dysfunction. This study is a two-group quadruple-blinded randomized controlled trial (RCT) of active vs. sham repetitive transmagnetic stimulation (rTMS). In addition, our study will also include functional magnetic resonance imaging (fMRI), pelvic floor electromyography (EMG), pelvic exam, and outcome measures and questionnaires to further study outcomes. Ethics and dissemination All aspects of the study were approved by the Institutional Review Board of the University of Southern California (protocol HS-20–01021). All participants provided informed consent by the research coordinator/assistants. The results will be submitted for publication in peer-reviewed journals and disseminated at scientific conferences. Trial registration ClinicalTrials.gov NCT04734847. Registered on February 1, 2021.
Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis
Reduced functional bladder capacity and concomitant increased micturition frequency (pollakisuria) are common lower urinary tract symptoms associated with conditions such as cystitis, prostatic hyperplasia, neurological disease, and overactive bladder syndrome. These symptoms can profoundly affect the quality of life of afflicted individuals, but available pharmacological treatments are often unsatisfactory. Recent work has demonstrated that the cation channel TRPV4 is highly expressed in urothelial cells and plays a role in sensing the normal filling state of the bladder. In this article, we show that the development of cystitis-induced bladder dysfunction is strongly impaired in Trpv4 -/- mice. Moreover, we describe HC-067047, a previously uncharacterized, potent, and selective TRPV4 antagonist that increases functional bladder capacity and reduces micturition frequency in WT mice and rats with cystitis. HC-067047 did not affect bladder function in Trpv4 -/- mice, demonstrating that its in vivo effects are on target. These results indicate that TRPV4 antagonists may provide a promising means of treating bladder dysfunction.
Normalization of magnesium deficiency attenuated mechanical allodynia, depressive-like behaviors, and memory deficits associated with cyclophosphamide-induced cystitis by inhibiting TNF-α/NF-κB signaling in female rats
Background Bladder-related pain symptoms in patients with bladder pain syndrome/interstitial cystitis (BPS/IC) are often accompanied by depression and memory deficits. Magnesium deficiency contributes to neuroinflammation and is associated with pain, depression, and memory deficits. Neuroinflammation is involved in the mechanical allodynia of cyclophosphamide (CYP)-induced cystitis. Magnesium-L-Threonate (L-TAMS) supplementation can attenuate neuroinflammation. This study aimed to determine whether and how L-TAMS influences mechanical allodynia and accompanying depressive symptoms and memory deficits in CYP-induced cystitis. Methods Injection of CYP (50 mg/kg, intraperitoneally, every 3 days for 3 doses) was used to establish a rat model of BPS/IC. L-TAMS was administered in drinking water (604 mg·kg −1 ·day −1 ). Mechanical allodynia in the lower abdomen was assessed with von Frey filaments using the up-down method. Forced swim test (FST) and sucrose preference test (SPT) were used to measure depressive-like behaviors. Novel object recognition test (NORT) was used to detect short-term memory function. Concentrations of Mg 2+ in serum and cerebrospinal fluid (CSF) were measured by calmagite chronometry. Western blot and immunofluorescence staining measured the expression of tumor necrosis factor-α/nuclear factor-κB (TNF-α/NF-κB), interleukin-1β (IL-1β), and N -methyl- d -aspartate receptor type 2B subunit (NR2B) of the N -methyl- d -aspartate receptor in the L6–S1 spinal dorsal horn (SDH) and hippocampus. Results Free Mg 2+ was reduced in the serum and CSF of the CYP-induced cystitis rats on days 8, 12, and 20 after the first CYP injection. Magnesium deficiency in the serum and CSF correlated with the mechanical withdrawal threshold, depressive-like behaviors, and short-term memory deficits (STMD). Oral application of L-TAMS prevented magnesium deficiency and attenuated mechanical allodynia ( n = 14) and normalized depressive-like behaviors ( n = 10) and STMD ( n = 10). The upregulation of TNF-α/NF-κB signaling and IL-1β in the L6–S1 SDH or hippocampus was reversed by L-TAMS. The change in NR2B expression in the SDH and hippocampus in the cystitis model was normalized by L-TAMS. Conclusions Normalization of magnesium deficiency by L-TAMS attenuated mechanical allodynia, depressive-like behaviors, and STMD in the CYP-induced cystitis model via inhibition of TNF-α/NF-κВ signaling and normalization of NR2B expression. Our study provides evidence that L-TAMS may have therapeutic value for treating pain and comorbid depression or memory deficits in BPS/IC patients.
Voiding defects in acute radiation cystitis driven by urothelial barrier defect through loss of E-cadherin, ZO-1 and Uroplakin III
Long term-side effects from cancer therapies are a growing health care concern as life expectancy among cancer survivors increases. Damage to the bladder is common in patients treated with radiation therapy for pelvic cancers and can result in radiation (hemorrhagic) cystitis (RC). The disease progression of RC consists of an acute and chronic phase, separated by a symptom-free period. Gaining insight in tissue changes associated with these phases is necessary to develop appropriate interventions. Using a mouse preclinical model, we have previously shown that fibrosis and vascular damage are the predominant pathological features of chronic RC. The goal of this study was to determine the pathological changes during acute RC. We identified that radiation treatment results in a temporary increase in micturition frequency and decrease in void volume 4–8 weeks after irradiation. Histologically, the micturition defect is associated with thinning of the urothelium, loss of urothelial cell–cell adhesion and tight junction proteins and decrease in uroplakin III expression. By 12 weeks, the urothelium had regenerated and micturition patterns were similar to littermate controls. No inflammation or fibrosis were detected in bladder tissues after irradiation. We conclude that functional bladder defects during acute RC are driven primarily by a urothelial defect.
Urinary K+ promotes irritative voiding symptoms and pain in the face of urothelial barrier dysfunction
The internal surface of the bladder is lined by the urothelium, a stratified epithelium that forms an impermeable barrier to water and urine constituents. Abnormalities in the urothelial barrier have been described in certain forms of cystitis and were hypothesized to contribute to irritative voiding symptoms and pain by allowing the permeation of urinary K + into suburothelial tissues, which then alters afferent signaling and smooth muscle function. Here, we examined the mechanisms underlying organ hyperactivity and pain in a model of cystitis caused by adenoviral-mediated expression of claudin-2 (Cldn2), a tight junction protein that forms paracellular pores and increases urothelial permeability. We found that in the presence of a leaky urothelium, intravesical K + sensitizes bladder afferents and enhances their response to distension. Notably, dietary K + restriction, a maneuver that reduces urinary K + , prevented the development of pelvic allodynia and inflammation seen in rats expressing Cldn2. Most importantly, intravesical K + causes and is required to maintain bladder hyperactivity in rats with increased urothelial permeability. Our study demonstrates that in the face of a leaky urothelium, urinary K + is the main determinant of afferent hyperexcitability, organ hyperactivity and pain. These findings support the notion that voiding symptoms and pain seen in forms of cystitis that coexist with urothelial barrier dysfunction could be alleviated by cutting urinary K + levels.
Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome
PurposeInterstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic pain syndrome and a chronic inflammatory condition prevalent in women that leads to urgency, sleep disruption, nocturia and pain in the pelvic area, to the detriment of the sufferer’s quality of life. The aim of this review is to highlight the newest diagnostic strategies and potential therapeutic techniques.MethodsA comprehensive literature review was performed on MEDLINE, PubMed, and Cochrane databases gathering all literature about “Interstitial cystitis” and “Painful Bladder Syndrome”. Visual analogue scales, epidemiological strategies, pain questionnaires and similar techniques were not included in this literature survey.ResultsThe etiology, exact diagnosis and epidemiology of IC/PBS are still not clearly understood. To date, its prevalence is estimated to be in the range of 45 per 100,000 women and 8 per 100,000 men, whereas joint prevalence in both sexes is 10.6 cases per 100,000. There are no “gold standards” in the diagnosis or detection of IC/PBS, therefore, several etiological theories were investigated, such as permeability, glycosaminoglycans, mast cell, infection and neuroendocrine theory to find new diagnostic strategies and potential biomarkers.ConclusionDue to the fact that this disease is of an intricate nature, and that many of its symptoms overlap with other concomitant diseases, it could be suggested to classify the patients with emphasis on the phenotype, as well as their symptom clusters, to tailor the diagnostic and management choices according to the observed biomarkers.
Increased Piezo1 channel activity in interstitial Cajal-like cells induces bladder hyperactivity by functionally interacting with NCX1 in rats with cyclophosphamide-induced cystitis
The Piezo1 channel is a mechanotransduction mediator, and Piezo1 abnormalities have been linked to several clinical disorders. However, the role of the Piezo1 channel in cystitis-associated bladder dysfunction has not been documented. The current study aimed to discover the functional role of this channel in regulating bladder activity during cyclophosphamide (CYP)-induced cystitis. One hundred four female rats were randomly assigned to the control, CYP-4h, CYP-48h and CYP-8d groups. CYP successfully induced acute or chronic cystitis in these rats. CYP treatment for 48h or 8d significantly increased Piezo1 channel expression in bladder interstitial Cajal-like cells (ICC-LCs), and the increase in CYP-8d rats was more prominent. In addition, 2.5 μM Grammostola spatulata mechanotoxin 4 (GsMTx4) significantly attenuated bladder hyperactivity in CYP-8d rats by inhibiting the Piezo1 channel in bladder ICC-LCs. Furthermore, by using GsMTx4 and siRNA targeting the Piezo1 channel, we demonstrated that hypotonic stress-induced Piezo1 channel activation significantly triggered Ca 2+ and Na + influx into bladder ICC-LCs during CYP-induced chronic cystitis. In addition, the Piezo1 channel functionally interacted with the relatively activated reverse mode of Na + /Ca 2+ exchanger 1 (NCX1) in bladder ICC-LCs from CYP-8d rats. In conclusion, we suggest that the functional role of the Piezo1 channel in CYP-induced chronic cystitis is based on its synergistic effects with NCX1, which can significantly enhance [Ca 2+ ] i and result in Ca 2+ overload in bladder ICC-LCs, indicating that the Piezo1 channel and NCX1 are potential novel therapeutic targets for chronic cystitis-associated bladder hyperactivity. Chronic cystitis: proteins may open a channel to treatment A protein that controls the passage of ions through cell membranes is implicated in interstitial cystitis/painful bladder syndrome (IC/PBS). This condition causes chronic pelvic pain and increased urinary frequency and urgency. Current treatment options are unsatisfactory. Researchers led by Longkun Li at the Third Military Medical University in Chongqing, China, and Mingjia Tan at the University of Michigan, Ann Arbor, USA, studied the role of this membrane channel protein, called Piezo1. Increased activity of Piezo1 was linked to bladder hyperactivity in rats with drug-induced cystitis. The research also identified a synergistic interaction between Piezo1 and a second membrane channel protein. A drug that inhibits Piezo1 activity reduced bladder hyperactivity in the rats. Drugs targeting these two proteins might help to treat the chronic cystitis of patients with IC/PBS.
Carbenoxolone inhibits TRPV4 channel‐initiated oxidative urothelial injury and ameliorates cyclophosphamide‐induced bladder dysfunction
Carbenoxolone (CBX) is a clinically prescribed drug for the treatment of digestive ulcer and inflammation. It is also a widely used pharmacological inhibitor of several channels in basic research. Given that the overactivity of several channels, including those inhibitable by CBX, underlies bladder dysfunction, we tested the potential therapeutic application and mechanism of CBX in the treatment of voiding dysfunction. In a mouse model of cystitis induced by cyclophosphamide (CYP), CBX administration prevented the CYP‐elicited increase in bladder weight, oedema, haemorrhage, and urothelial injury. CBX also greatly improved micturition pattern, as manifested by the apparently decreased micturition frequency and increased micturition volume. Western blot results showed that CBX suppressed CYP‐induced increase in protein carbonyls, COX‐2, and iNOS. Further analysis using cultured urothelial cells revealed that acrolein, the major metabolite of CYP, caused protein oxidation, p38 activation, and urothelial injury. These effects of acrolein were reproduced by TRPV4 agonists and significantly prevented by antioxidant NAC, p38 inhibitor SB203580, TRPV4 antagonist RN‐1734, and CBX. Further studies showed that CBX potently suppressed TRPV4 agonist‐initiated calcium influx and subsequent cell injury. CBX attenuated CYP‐induced cystitis in vivo and reduced acrolein‐induced cell injury in vitro, through mechanisms involving inhibition of TRPV4 channels and attenuation of the channel‐mediated oxidative stress. CBX might be a promising agent for the treatment of bladder dysfunction.