Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Language
    • Place of Publication
    • Contributors
    • Location
37,783 result(s) for "Cytogenetics"
Sort by:
Seeds of discovery : how Barbara McClintock used corn and curiosity to solve a science mystery and win a Nobel prize
\"As a rare female botanist in early twentieth-century America, Barbara McClintock never let other people's notions of what was proper slow her down. When she faced doubting colleagues and unsupportive institutions, she drove across the United States, climbed through windows, and even slept in her laboratory to conduct her research. In so doing, she helped pave the way for future scientific discoveries that can cure diseases and save lives -- and won a Nobel Prize in the process!\" -- Provided by publisher.
Mechanisms of Karyotypic Diversification in IAncistrus/I : Inferences from Repetitive Sequence Analysis
Ancistrus is a highly diverse neotropical fish genus that exhibits extensive chromosomal variability, encompassing karyotypic morphology, diploid chromosome number (2n = 34–54), and the evolution of various types of sex chromosome systems. Robertsonian rearrangements related to unstable chromosomal sites are here described. Here, the karyotypes of two Ancistrus species were comparatively analyzed using classical cytogenetic techniques, in addition to isolation, cloning, sequencing, molecular characterization, and fluorescence in situ hybridization of repetitive sequences (i.e., 18S and 5S rDNA; U1, U2, and U5 snDNA; and telomere sequences). The species analyzed here have different karyotypes: Ancistrus sp. 1 (2n = 38, XX/XY) and Ancistrus cirrhosus (2n = 34, no heteromorphic sex chromosomes). Comparative mapping showed different organizations for the analyzed repetitive sequences: 18S and U1 sequences occurred in a single site in all populations of the analyzed species, while 5S and U2 sequences could occur in single or multiple sites. A sequencing analysis confirmed the identities of the U1, U2, and U5 snDNA sequences. Additionally, a syntenic condition for U2-U5 snDNA was found in Ancistrus. In a comparative analysis, the sequences of rDNA and U snDNA showed inter- and intraspecific chromosomal diversification. The occurrence of Robertsonian rearrangements and other dispersal mechanisms of repetitive sequences are discussed.
Decitabine for Myelodysplastic Syndromes and Acute Myeloid Leukemia
Patients with TP53 mutations or unfavorable cytogenetics showed high rates of response.
Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana IScleropages formosus/I
Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.
Plant Cytogenetics in the Micronuclei Investigation—The Past, Current Status, and Perspectives
Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.