Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
106,083
result(s) for
"Cytokines - metabolism"
Sort by:
Body messages : the quest for the proteins of cellular communication
This is a book about the research process that led scientists to the discovery of a group of molecules that act as carriers of information among the cells of our body, which the book refers to collectively as \"body messages.\" Among the thousands of body messages, the author selected those that are part of her own research, the cytokines, adipokines, and other proteins that regulate inflammation and metabolism. She also interviewed twenty researchers who contributed significantly to the field, asking details about their discoveries while also inquiring about their life and education. Along with scientists' personal recollections, the book reconstructs the discovery process based on published reports of the original experimental findings. Though the book's main theme is the process of discovery, it devotes considerable space to the biology of body messages and the consequence of their identification for medical practice.-- Provided by publisher
Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms
2021
The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (
P
= 0.0198) and less time required for symptoms remission (
P
= 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (
P
= 0.0099) and day 21 (
P
= 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2
+
hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors — CX3CR1 and L-selectin — were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.
Journal Article
Cytokines, Hormones and Cellular Regulatory Mechanisms Favoring Successful Reproduction
2021
Its semi-allogeneic nature renders the conceptus vulnerable to attack by the maternal immune system. Several protective mechanisms operate during gestation to correct the harmful effects of anti-fetal immunity and to support a healthy pregnancy outcome. Pregnancy is characterized by gross alterations in endocrine functions. Progesterone is indispensable for pregnancy and humans, and it affects immune functions both directly and via mediators. The progesterone-induced mediator - PIBF - acts in favor of Th2-type immunity, by increasing Th2 type cytokines production. Except for implantation and parturition, pregnancy is characterized by a Th2-dominant cytokine pattern. Progesterone and the orally-administered progestogen dydrogesterone upregulate the production of Th2-type cytokines and suppress the production of Th1 and Th17 cytokine production in vitro . This is particularly relevant to the fact that the Th1-type cytokines TNF-α and IFN-γ and the Th17 cytokine IL-17 have embryotoxic and anti-trophoblast activities. These cytokine-modulating effects and the PIBF-inducing capabilities of dydrogesterone may contribute to the demonstrated beneficial effects of dydrogesterone in recurrent spontaneous miscarriage and threatened miscarriage. IL-17 and IL-22 produced by T helper cells are involved in allograft rejection, and therefore could account for the rejection of paternal HLA-C-expressing trophoblast. Th17 cells (producing IL-17 and IL-22) and Th22 cells (producing IL-22) exhibit plasticity and could produce IL-22 and IL-17 in association with Th2-type cytokines or with Th1-type cytokines. IL-17 and IL-22 producing Th cells are not harmful for the conceptus, if they also produce IL-4. Another important protective mechanism is connected with the expansion and action of regulatory T cells, which play a major role in the induction of tolerance both in pregnant women and in tumour-bearing patients. Clonally-expanded Treg cells increase at the feto-maternal interface and in tumour-infiltrating regions. While in cancer patients, clonally-expanded Treg cells are present in peripheral blood, they are scarce in pregnancy blood, suggesting that fetal antigen-specific tolerance is restricted to the foeto-maternal interface. The significance of Treg cells in maintaining a normal materno-foetal interaction is underlined by the fact that miscarriage is characterized by a decreased number of total effector Treg cells, and the number of clonally-expanded effector Treg cells is markedly reduced in preeclampsia. In this review we present an overview of the above mechanisms, attempt to show how they are connected, how they operate during normal gestation and how their failure might lead to pregnancy pathologies.
Journal Article
Necroptosis microenvironment directs lineage commitment in liver cancer
2018
Primary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and responses to therapy. However, the regulatory molecules and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here we show that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumorigenesis. Whereas a necroptosis-associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes containing identical oncogenic drivers give rise to HCC if they are surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of mouse HCC and ICC singled out
Tbx3
and
Prdm5
as major microenvironment-dependent and epigenetically regulated lineage-commitment factors, a function that is conserved in humans. Together, our results provide insight into lineage commitment in liver tumorigenesis, and explain molecularly why common liver-damaging risk factors can lead to either HCC or ICC.
The tumour microenvironment determines which type of liver cancer develops, with transformed hepatocytes giving rise to intrahepatic cholangiocarcinoma or hepatocellular carcinoma depending or whether they are surrounded by cells undergoing necroptosis or apoptosis.
Journal Article
Randomized, controlled trial of TNF-α antagonist in CTL-mediated severe cutaneous adverse reactions
by
Ho, Hsin-Chun
,
Yang, Chih-Hsun
,
Chang, Wei-Yang
in
Administration, Cutaneous
,
Adrenal Cortex Hormones - pharmacology
,
Adult
2018
Cytotoxic T lymphocyte-mediated (CTL-mediated) severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), are rare but life-threatening adverse reactions commonly induced by drugs. Although high levels of CTL-associated cytokines, chemokines, or cytotoxic proteins, including TNF-α and granulysin, were observed in SJS-TEN patients in recent studies, the optimal treatment for these diseases remains controversial. We aimed to evaluate the efficacy, safety, and therapeutic mechanism of a TNF-α antagonist in CTL-mediated SCARs.
We enrolled 96 patients with SJS-TEN in a randomized trial to compare the effects of the TNF-α antagonist etanercept versus traditional corticosteroids.
Etanercept improved clinical outcomes in patients with SJS-TEN. Etanercept decreased the SCORTEN-based predicted mortality rate (predicted and observed rates, 17.7% and 8.3%, respectively). Compared with corticosteroids, etanercept further reduced the skin-healing time in moderate-to-severe SJS-TEN patients (median time for skin healing was 14 and 19 days for etanercept and corticosteroids, respectively; P = 0.010), with a lower incidence of gastrointestinal hemorrhage in all SJS-TEN patients (2.6% for etanercept and 18.2% for corticosteroids; P = 0.03). In the therapeutic mechanism study, etanercept decreased the TNF-α and granulysin secretions in blister fluids and plasma (45.7%-62.5% decrease after treatment; all P < 0.05) and increased the Treg population (2-fold percentage increase after treatment; P = 0.002), which was related to mortality in severe SJS-TEN.
The anti-TNF-α biologic agent etanercept serves as an effective alternative for the treatment of CTL-mediated SCARs.
ClinicalTrials.gov NCT01276314.
Ministry of Science and Technology of Taiwan.
Journal Article
Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing
2016
Sumolyation regulates wide-ranging biological processes, but its influence on innate immunity is unclear. Amigorena and colleagues show that sumoylation negatively regulates interferon-β expression and anti-viral immunity.
Innate sensing of pathogens initiates inflammatory cytokine responses that need to be tightly controlled. We found here that after engagement of Toll-like receptors (TLRs) in myeloid cells, deficient sumoylation caused increased secretion of transcription factor NF-κB–dependent inflammatory cytokines and a massive type I interferon signature. In mice, diminished sumoylation conferred susceptibility to endotoxin shock and resistance to viral infection. Overproduction of several NF-κB-dependent inflammatory cytokines required expression of the type I interferon receptor, which identified type I interferon as a central sumoylation-controlled hub for inflammation. Mechanistically, the small ubiquitin-like modifier SUMO operated from a distal enhancer of the gene encoding interferon-β (
Ifnb1
) to silence both basal and stimulus-induced activity of the
Ifnb1
promoter. Therefore, sumoylation restrained inflammation by silencing
Ifnb1
expression and by strictly suppressing an unanticipated priming by type I interferons of the TLR-induced production of inflammatory cytokines.
Journal Article
Inflammatory Cytokines in Experimental and Human Stroke
by
Finsen, Bente
,
Biber, Knut
,
Lambertsen, Kate Lykke
in
Biological and medical sciences
,
Cerebral blood flow
,
Cerebral Infarction - pathology
2012
Inflammation is a hallmark of stroke pathology. The cytokines, tumor necrosis factor (TNF), interleukin (IL)-1, and IL-6, modulate tissue injury in experimental stroke and are therefore potential targets in future stroke therapy. The effect of these cytokines on infarct evolution depends on their availability in the ischemic penumbra in the early phase after stroke onset, corresponding to the therapeutic window (<4.5 hours), which is similar in human and experimental stroke. This review summarizes a large body of literature on the spatiotemporal and cellular production of TNF, IL-1, and IL-6, focusing on the early phase in experimental and human stroke. We also review studies of cytokines in blood and cerebrospinal fluid in stroke. Tumor necrosis factor and IL-1 are upregulated early in peri-infarct microglia. Newer literature suggests that IL-6 is produced by microglia, in addition to neurons. Tumor necrosis factor- and IL-1-producing macrophages infiltrate the infarct and peri-infarct with a delay. This information is discussed in the context of suggestions that neuronal sensitivity to ischemia may be modulated by cytokines. The fact that TNF and IL-1, and suppossedly also IL-6, are produced by microglia within the therapeutic window place these cells centrally in potential future stroke therapy.
Journal Article
IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies
by
Anquetil, Florence
,
Pasquali, Jean-Louis
,
Serre, Guy
in
Anti-Idiotypic / metabolism
,
Antibodies
,
Antibodies, Anti-Idiotypic - metabolism
2015
ObjectivesAnticitrullinated protein antibodies (ACPA) are specifically associated with rheumatoid arthritis (RA) and produced in inflamed synovial membranes where citrullinated fibrin, their antigenic target, is abundant. We showed that immune complexes containing IgG ACPA (ACPA-IC) induce FcγR-mediated tumour necrosis factor (TNF)-α secretion in macrophages. Since IgM rheumatoid factor (RF), an autoantibody directed to the Fc fragment of IgG, is also produced and concentrated in the rheumatoid synovial tissue, we evaluated its influence on macrophage stimulation by ACPA-IC.MethodsWith monocyte-derived macrophages from more than 40 healthy individuals and different human IgM cryoglobulins with RF activity, using a previously developed human in vitro model, we evaluated the effect of the incorporation of IgM RF into ACPA-IC.ResultsIgM RF induced an important amplification of the TNF-α secretion. This effect was not observed in monocytes and depended on an increase in the number of IgG-engaged FcγR. It extended to the secretion of interleukin (IL)-1β and IL-6, was paralleled by IL-8 secretion and was not associated with overwhelming secretion of IL-10 or IL-1Ra. Moreover, the RF-induced increased proinflammatory bioactivity of the cytokine response to ACPA-IC was confirmed by an enhanced, not entirely TNF-dependent, capacity of the secreted cytokine cocktail to prompt IL-6 secretion by RA synoviocytes.ConclusionsBy showing that it can greatly enhance the proinflammatory cytokine response induced in macrophages by the RA-specific ACPA-IC, these results highlight a previously undescribed, FcγR-dependent strong proinflammatory potential of IgM RF. They clarify the pathophysiological link between the presence of ACPA and IgM RF, and RA severity.
Journal Article
The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial
2017
We report on the effect of hemoadsorption therapy to reduce cytokines in septic patients with respiratory failure.
This was a randomized, controlled, open-label, multicenter trial. Mechanically ventilated patients with severe sepsis or septic shock and acute lung injury or acute respiratory distress syndrome were eligible for study inclusion. Patients were randomly assigned to either therapy with CytoSorb hemoperfusion for 6 hours per day for up to 7 consecutive days (treatment), or no hemoperfusion (control). Primary outcome was change in normalized IL-6-serum concentrations during study day 1 and 7.
97 of the 100 randomized patients were analyzed. We were not able to detect differences in systemic plasma IL-6 levels between the two groups (n = 75; p = 0.15). Significant IL-6 elimination, averaging between 5 and 18% per blood pass throughout the entire treatment period was recorded. In the unadjusted analysis, 60-day-mortality was significantly higher in the treatment group (44.7%) compared to the control group (26.0%; p = 0.039). The proportion of patients receiving renal replacement therapy at the time of enrollment was higher in the treatment group (31.9%) when compared to the control group (16.3%). After adjustment for patient morbidity and baseline imbalances, no association of hemoperfusion with mortality was found (p = 0.19).
In this patient population with predominantly septic shock and multiple organ failure, hemoadsorption removed IL-6 but this did not lead to lower plasma IL-6-levels. We did not detect statistically significant differences in the secondary outcomes multiple organ dysfunction score, ventilation time and time course of oxygenation.
Journal Article
Macrophage Activation-Like Syndrome: A Distinct Entity Leading to Early Death in Sepsis
2019
Hemophagocytic lymphohistocytosis (HLH) is characterized by fulminant cytokine storm leading to multiple organ dysfunction and high mortality. HLH is classified into familial (fHLH) and into secondary (sHLH). fHLH is rare and it is due to mutations of genes encoding for perforin or excretory granules of natural killer (NK) cells of CD8-lymphocytes. sHLH is also known as macrophage activation syndrome (MAS). Macrophage activation syndrome (MAS) in adults is poorly studied. Main features are fever, hepatosplenomegaly, hepatobiliary dysfunction (HBD), coagulopathy, cytopenia of two to three cell lineages, increased triglycerides and hemophagocytosis in the bone marrow. sHLH/MAS complicates hematologic malignancies, autoimmune disorders and infections mainly of viral origin. Pathogenesis is poorly understood and it is associated with increased activation of macrophages and NK cells. An autocrine loop of interleukin (IL)-1β over-secretion leads to cytokine storm of IL-6, IL-18, ferritin, and interferon-gamma; soluble CD163 is highly increased from macrophages. The true incidence of sHLH/MAS among patients with sepsis has only been studied in the cohort of the Hellenic Sepsis Study Group. Patients meeting the Sepsis-3 criteria and who had positive HSscore or co-presence of HBD and disseminated intravascular coagulation (DIC) were classified as patients with macrophage activation-like syndrome (MALS). The frequency of MALS ranged between 3 and 4% and it was an independent entity associated with early mortality after 10 days. Ferritin was proposed as a diagnostic and surrogate biomarker. Concentrations >4,420 ng/ml were associated with diagnosis of MALS with 97.1% specificity and 98% negative predictive value. Increased ferritin was also associated with increased IL-6, IL-18, IFNγ, and sCD163 and by decreased IL-10/TNFα ratio. A drop of ferritin by 15% the first 48 h was a surrogate finding of favorable outcome. There are 10 on-going trials in adults with sHLH; two for the development of biomarkers and eight for management. Only one of them is focusing in sepsis. The acronym of the trial is PROVIDE (ClinicalTrials.gov NCT03332225) and it is a double-blind randomized clinical trial aiming to deliver to patients with septic shock treatment targeting their precise immune state. Patients diagnosed with MALS are receiving randomized treatment with placebo or the IL-1β blocker anakinra.
Journal Article