Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
142
result(s) for
"Cytoplasmic Dyneins - genetics"
Sort by:
Cryo-EM captures early intermediate steps in dynein activation by LIS1
by
Leschziner, Andres E.
,
Reck-Peterson, Samara L.
,
Karasmanis, Eva P.
in
1-Alkyl-2-acetylglycerophosphocholine Esterase - chemistry
,
1-Alkyl-2-acetylglycerophosphocholine Esterase - genetics
,
1-Alkyl-2-acetylglycerophosphocholine Esterase - metabolism
2025
Cytoplasmic dynein-1 (dynein) is an essential molecular motor in eukaryotic cells. Dynein primarily exists in an autoinhibited Phi state and requires conformational changes to assemble with its cofactors and form active transport complexes. LIS1, a key dynein regulator, enhances dynein activation and assembly. Using cryo-EM and a human dynein-LIS1 sample incubated with ATP, we map the conformational landscape of dynein activation by LIS1 and identify an early intermediate state that we propose precedes the previously identified dynein-LIS1 Chi state. Mutations that disrupt this species, which we termed “Pre-Chi”, lead to motility defects in vitro, emphasizing its functional importance. Together, our findings provide insights into how LIS1 relieves dynein autoinhibition during the activation pathway.
The molecular motor dynein is modulated by several protein regulators, including LIS1. Here, authors use cryo-EM to show how LIS1 activates dynein by disrupting its autoinhibition and stabilizing intermediate states required to assemble the complexes that mediate transport.
Journal Article
DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes
2017
Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein’s core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein–dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo–motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.
Journal Article
RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs
by
Dix, Carly I
,
McClintock, Mark A
,
Johnson, Christopher M
in
Animals
,
Bicaudal-D
,
Binding Sites
2018
Polarised mRNA transport is a prevalent mechanism for spatial control of protein synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the regulation of their movement are poorly understood. We have reconstituted microtubule minus end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a cis-acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport. In our cells, tiny molecular motors transport the components necessary for life’s biological processes from one location to another. They do so by loading their cargo, and burning up chemical fuel to carry it along pathways made of filaments. For example, one such motor, called dynein, can move molecules of messenger RNA (mRNA) to specific locations within the cell. There, the mRNA will be used as a template to create proteins, which will operate at exactly the right place. Transporting mRNA in this way is critical in processes such as embryonic development and the formation of memories; yet, this mechanism is still poorly understood. Previous work suggested that the mRNA is simply a passenger of the dynein motor, but McClintock et al. asked if this is really the case. Instead, could mRNA regulate its own sorting by controlling the activity of dynein? Studying mRNA trafficking within the complex molecular environment of a cell is challenging, so mRNA transporting machinery was recreated in the laboratory. Only the proteins necessary to build a working system were included in the experiments. In addition to the filaments, the components included dynein and a complex of proteins known as dynactin, which allows the motor to move together with a protein called BICD2. A protein named Egalitarian was used to link the mRNA to BICD2. By filming fluorescently labelled proteins and mRNAs, McClintock et al. discovered that mRNA strongly promotes the movement of the dynein motor. A structured section in the mRNA acts as a docking area for two copies of Egalitarian. This activates BICD2, which then binds to dynein and dynactin, thereby completing the transport machinery. According to these results, the mRNA directs the assembly of the system that will carry it within the cell. Viruses such as HIV and herpesvirus hijack dynein motors to have their genetic information moved around a cell in order to propagate infection. Understanding precisely how mRNA is transported may help to develop new strategies to fight these viruses.
Journal Article
Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation
2012
Spindle orientation depends on the tethering of microtubules to the cell cortex through LGN, NuMA and dynein/dynactin. Cheeseman and colleagues find that spindle-pole-associated Plk1 activity restricts polar dynein whereas chromosomal RanGTP negatively regulates LGN localization at the lateral cell cortex, thus identifying two differentially localized signals that modulate spindle positioning by acting on dynein-mediated forces.
Mitotic spindle positioning by cortical pulling forces
1
defines the cell division axis and location
2
, which is critical for proper cell division and development
3
. Although recent work has identified developmental and extrinsic cues that regulate spindle orientation
4
,
5
,
6
, the contribution of intrinsic signals to spindle positioning and orientation remains unclear. Here, we demonstrate that cortical force generation in human cells is controlled by distinct spindle-pole- and chromosome-derived signals that regulate cytoplasmic dynein localization. First, dynein exhibits a dynamic asymmetric cortical localization that is negatively regulated by spindle-pole proximity, resulting in spindle oscillations to centre the spindle within the cell. We find that this signal comprises the spindle-pole-localized polo-like kinase (Plk1), which regulates dynein localization by controlling the interaction between dynein–dynactin and its upstream cortical targeting factors NuMA and LGN. Second, a chromosome-derived RanGTP gradient restricts the localization of NuMA–LGN to the lateral cell cortex to define and maintain the spindle orientation axis. RanGTP acts in part through the nuclear localization sequence of NuMA to locally alter the ability of NuMA–LGN to associate with the cell cortex in the vicinity of chromosomes. We propose that these chromosome- and spindle-pole-derived gradients generate an intrinsic code to control spindle position and orientation.
Journal Article
Structural basis for cytoplasmic dynein-1 regulation by Lis1
by
Karasmanis, Eva P
,
Lahiri, Indrajit
,
Htet, Zaw Min
in
1-Alkyl-2-acetylglycerophosphocholine Esterase - chemistry
,
1-Alkyl-2-acetylglycerophosphocholine Esterase - genetics
,
1-Alkyl-2-acetylglycerophosphocholine Esterase - metabolism
2022
The lissencephaly 1 gene, LIS1 , is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein’s motor domain, and by doing so alters dynein’s mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein–Lis1 complex. Our 3.1 Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1’s ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1’s ability to form fully active human dynein complexes and to regulate yeast dynein’s mechanochemistry and in vivo function.
Journal Article
Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly
by
Hieu, Thierry
,
Darra, Franscesca
,
Broix, Loic
in
692/699/375/366
,
Agriculture
,
Animal Genetics and Genomics
2013
Jamel Chelly, Nicholas Cowan and colleagues report mutations in
TUBG1
,
DYNC1H1
,
KIF2A
and
KIF5C
in individuals with malformations of cortical development and microcephaly. Their findings emphasize the importance of centrosomal and microtubule-related proteins for normal brain development.
The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in
TUBG1, DYNC1H1
and
KIF2A
, as well as a single germline mosaic mutation in
KIF5C
, in subjects with MCD. We found a frequent recurrence of mutations in
DYNC1H1
, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in
KIF5C, KIF2A
and
DYNC1H1
affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse
Tubg1
expression
in vivo
interferes with proper neuronal migration, whereas expression of altered γ-tubulin proteins in
Saccharomyces cerevisiae
disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD.
Journal Article
A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport
by
Born, Alexandra
,
McCabe, Maxwell
,
Gassmann, Reto
in
Adapters
,
Adaptor Proteins, Signal Transducing - metabolism
,
Animals
2019
All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo.
Journal Article
The function of the cytoplasmic dynein light chain PTKM23 in the transport of PTSMAD2 during spermatogenesis in Portunus trituberculatus
2024
Cytoplasmic dynein participates in transport functions and is essential in spermatogenesis. KM23 belongs to the dynein light chain family. The TGFβ signaling pathway is indispensable in spermatogenesis, and Smad2 is an important member of this pathway. We cloned PTKM23 and PTSMAD2 from Portunus trituberculatus and measured their expression during spermatogenesis. PTKM23 may be related to cell division, acrosome formation, and nuclear remodeling, and PTSMAD2 may participate in regulating the expression of genes related to spermatogenesis. We assessed the localization of PTKM23 with PTDHC and α-tubulin, and the results suggested that PTKM23 functions in intracellular transport during spermatogenesis. We knocked down PTKM23 in vivo, and the expression of p53, B-CATAENIN and CYCLIN B decreased significantly, further suggesting a role of PTKM23 in transport and cell division. The localization of PTDIC with α-tubulin and that of PTSMAD2 with PTDHC changed after PTKM23 knockdown. We transfected PTKM23 and PTSMAD2 into HEK-293 T cells and verified their colocalization. These results indicate that PTKM23 is involved in the assembly of cytoplasmic dynein and microtubules during spermatogenesis and that PTKM23 mediates the participation of cytoplasmic dynein in the transport of PTSMAD2 during spermatogenesis. Summary Sentence This study demonstrated that PTKM23 transports PTSMAD2 during spermatogenesis and provides a theoretical molecular biological basis for the breeding of P. trituberculatus. Graphical Abstract
Journal Article
Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement
by
Duijkers, Lonneke
,
Knoers, Nine VAM
,
Wellesley, Diana
in
Base Sequence
,
Clinical Genetics
,
Cytoplasmic Dyneins - chemistry
2013
Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.
Journal Article
Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS–Hook–FHIP complexes
by
Christensen, Jenna R
,
Aguilar-Maldonado, Adriana
,
Reck-Peterson, Samara L
in
Adaptor proteins
,
Adaptor Proteins, Signal Transducing - genetics
,
Adaptor Proteins, Signal Transducing - metabolism
2021
In eukaryotic cells, intracellular components are organized by the microtubule motors cytoplasmic dynein-1 (dynein) and kinesins, which are linked to cargos via adaptor proteins. While ~40 kinesins transport cargo toward the plus end of microtubules, a single dynein moves cargo in the opposite direction. How dynein transports a wide variety of cargos remains an open question. The FTS–Hook–FHIP (‘FHF’) cargo adaptor complex links dynein to cargo in humans and fungi. As human cells have three Hooks and four FHIP proteins, we hypothesized that the combinatorial assembly of different Hook and FHIP proteins could underlie dynein cargo diversity. Using proteomic approaches, we determine the protein ‘interactome’ of each FHIP protein. Live-cell imaging and biochemical approaches show that different FHF complexes associate with distinct motile cargos. These complexes also move with dynein and its cofactor dynactin in single-molecule in vitro reconstitution assays. Complexes composed of FTS, FHIP1B, and Hook1/Hook3 colocalize with Rab5-tagged early endosomes via a direct interaction between FHIP1B and GTP-bound Rab5. In contrast, complexes composed of FTS, FHIP2A, and Hook2 colocalize with Rab1A-tagged ER-to-Golgi cargos and FHIP2A is involved in the motility of Rab1A tubules. Our findings suggest that combinatorial assembly of different FTS–Hook–FHIP complexes is one mechanism dynein uses to achieve cargo specificity.
Journal Article