Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
21,674 result(s) for "Cytotoxicity activity"
Sort by:
An Unusual Diterpene—Enhygromic Acid and Deoxyenhygrolides from a Marine Myxobacterium, Enhygromyxa sp
Three new compounds, enhygromic acid (1) and deoxyenhygrolides A (2) and B (3), were isolated from a marine myxobacterium, Enhygromyxa sp. Compound 1 was found to be an acrylic acid derivative with a rare polycyclic carbon skeleton, decahydroacenaphthylene, by spectroscopic analyses. Compounds 2 and 3 were deoxy analogs of the known γ-alkylidenebutenolides, enhygrolides. Compound 1 exhibited cytotoxicity against B16 melanoma cells and anti-bacterial activity against Bacillus subtilis, and enhanced the NGF-induced neurite outgrowth of PC12 cells.
Evaluation of antibacterial, cytotoxicity, and apoptosis activity of novel chromene-sulfonamide hybrids synthesized under solvent-free conditions and 3D-QSAR modeling studies
In this study, eleven novel chromene sulfonamide hybrids were synthesized by a convenient method in accordance with green chemistry. At first, chromene derivatives ( 1 – 9a ) were prepared through the multi-component reaction between aryl aldehydes, malononitrile, and 3-aminophenol. Then, synthesized chromenes were reacted with appropriate sulfonyl chlorides by grinding method to give the corresponding chromene sulfonamide hybrids ( 1 – 11b ). Synthesized hybrids were obtained in good to high yield and characterized by IR, 1 HNMR, 13 CNMR, CHN and melting point techniques. In addition, the broth microdilution assay was used to determine the minimal inhibitory concentration of newly synthesized chromene-sulfonamide hybrids. The MTT test was used to determine the cytotoxicity and apoptotic activity of the newly synthesized compounds against fibroblast L929 cells. The 3D‑QSAR analysis confirmed the experimental assays, demonstrating that our predictive model is useful for developing new antibacterial inhibitors. Consequently, molecular docking studies were performed to validate the findings of the 3D-QSAR analysis, confirming the potential binding interactions of the synthesized chromene-sulfonamide hybrids with the target enzymes. Molecular docking studies were employed to support the 3D-QSAR predictions, providing insights into the binding interactions between the newly synthesized chromene-sulfonamide hybrids and their target bacterial enzymes, thereby reinforcing the potential efficacy of these compounds as antibacterial agents. Also, some of the experimental outcomes supported or conflicted with the pharmacokinetic prediction (especially about compound carcinogenicity). The performance of ADMET predictor results was assessed. The work presented here proposes a computationally driven strategy for designing and discovering a new sulfonamide scaffold for bacterial inhibition.
Identification of the Main Specialized Metabolites of Ceanothus caeruleus and Cytotoxic Effects of a-nor-Lupane Derivatives
The dichloromethane (DCM) and ethyl acetate (EtOAc) extracts of C. caeruleus yielded nine known compounds, including an A-nor-lupane triterpenoid identified as gouanic acid B (1). Additionally, its acetyl derivative, acetylgouanic acid B (2), is reported here for the first time as a natural product. Furthermore, we tested the bioactivity of natural products 1 and 2 and their dimethyl ester derivatives 3 and 4 against cancer cell lines MCF-7, A549, HeLa, and K562. Among these, compounds 1 (IC50 = 36.4 ± 4.0 μM), 2 (IC50 = 21.6 ± 4.3 μM), and 4 (IC50 = 33.0 ± 2.0 μM) demonstrated moderate to good activity against the K562 cell line while maintaining a satisfactory survival rate in non-cancerous bMEC cells. Notably, the natural triterpenes 1 and 2 and derivative 4 showed remarkable outcomes in cytotoxicity tests due to their specificity against K562 leukemia cells.
Evaluation of antibacterial and cytotoxic effects of silver oxide nanoparticles synthesized from Psidium Guajava
Growing concerns over the toxicity and environmental impact of traditional nanoparticle synthesis methods have driven the search for safer, more sustainable alternatives. At the same time, the rising prevalence of antibiotic-resistant bacteria and the ongoing challenges in effective cancer treatment emphasize the urgent need for new antimicrobial and anticancer solutions. The manufacture of silver oxide nanoparticles (Ag₂O-NPs) is investigated in this work using Psidium guajava (guava) leaves extract, focusing on their dual biological potential. The use of dangerous chemicals is reduced by this green synthesis technique by employing natural phytochemicals from guava leaves as stabilizing and reducing agents, making it more environmentally friendly compared to traditional chemical approaches. At 435 nm, the biosynthesized Ag₂O-NPs displayed a distinctive surface plasmon resonance (SPR) band. With a polydispersity index (PDI) of 0.368. Nanocrystalline, mostly spherical Ag₂O-NPs with an average size of 25 to 30 nm were successfully formed, according to thorough characterization utilizing FTIR, XRD, SEM, TEM, and EDX. These nanoparticles demonstrated strong antibacterial activity against four clinically relevant, drug-resistant bacterial strains: Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium ATCC 13311, Escherichia coli ATCC 25922, and Staphylococcus aureus ATCC 29213. Minimum inhibitory concentration (MIC) values ranged from 31.2 to 250 µg/mL, indicating a dose-dependent antibacterial action. Notably, P. aeruginosa and S. aureus showed the highest sensitivity. Cytotoxicity testing further revealed selective anticancer activity, with the Ag₂O-NPs significantly reducing the viability of HepG2 liver cancer cells (IC₅₀ = 73.93 ± 0.49 µg/mL), while displaying lower toxicity toward normal Vero cells (IC₅₀ = 158.1 ± 0.41 µg/mL). These findings suggest that green-synthesized Ag₂O-NPs hold considerable promise as both potent antibacterial agents and effective anticancer therapeutics.
Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics
An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV–vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13–40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (−19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25–100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.
Copper nanoparticles biosynthesis by Priestia megaterium and its application as antibacterial and antitumor agents
The growth of material science and technology places high importance on creating better processes for synthesizing copper nanoparticles. Thus, an easy, ecological, and benign process for producing copper nanoparticles (CuNPs) has been developed using Priestia sp. bacteria utilizing a variety of low-cost agro-industrial wastes and byproducts. The biosynthesis of CuNPs was conducted using glucose medium and copper ions salt solution, then it was replaced by utilizing low-cost agro-industrial wastes. UV–visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM), Attenuated Total Reflectance and Fourier transform infrared (ATR-FTIR), and zeta potential were used to characterize the biosynthesized CuNPs. The cytotoxicity of CuNPs using Vero -CCL-81 cell lines, and antibacterial and antitumor properties using human colon epithelial colorectal adenocarcinoma Caco-2-HTB-37 cell lines were assessed. The UV–visible and DLS studies revealed CuNPs formation, with a maximum concentration of 6.19 ppm after 48 h, as indicated by a 0.58 Surface plasmon resonance (SPR) within 450 nm and 57.73 nm particle size. The 16S rRNA gene analysis revealed that Priestia sp. isolate is closely related to Priestia megaterium and has been deposited in the NCBI GenBank with accession number AMD 2024. The biosynthesis with various agro-industrial wastes indicated blackstrap sugar cane molasses being the most effective for reducing CuNPs size to 3.12 nm owing to various reducing and stabilizing active compounds. The CuNPs were free of contaminants, with a sphere-shaped structure and a cytotoxicity assessment with an IC 50 of 367.27 μg/mL. The antibacterial activity exhibited by the most susceptible bacteria were Bacillus cereus ATCC 11788 and Staphylococcus aureus ATCC 6538 with inhibition zones of 26.0 mm and 28.0 mm, respectively. The antitumor effect showed an IC 50 dose of 175.36 μg/mL. Based on the findings, the current work sought to lower product costs and provide a practical solution to the environmental contamination issues brought on by the buildup of agricultural wastes. In addition, the obtained CuNPs could be applied in many fields such as pharmaceuticals, water purification, and agricultural applications as future aspects.
Green, Eco-Friendly, Highly Biocompatible and Bioactive Nanocomposite-Based Biopolymers Loaded with ZnO@Fe3O4 Nanoparticles
Biocompatibility is a major concern for promising multifunctional bioactive materials. Unfortunately, bioactive materials lack biocompatibility in some respects, so active ingredient formulations are urgently needed. Bimetallic nanoparticles have demonstrated drawbacks in stabilized biocompatible formulations. This study examined the preparation of biomaterial-based multifunctional biopolymers via an eco-friendly formulation method using ultrasound. Bimetallic zinc oxide/iron oxide (magnetic form) nanoparticles (ZnO@Fe3O4NPs) were formulated using casein and starch as capping agents and stabilizers. The formulated nanocomposite was characterized using ultraviolet–visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM). Herein, the formulated nanocomposite was shown to have a thermally stable nanostructure, and the bimetallic ZnO@Fe3O4 NPs were measured as 85 nm length and 13 nm width. Additionally, the biocompatibility test showed its excellent cytocompatibility with Wi 38 and Vero normal cell lines, with IC50 550 and 650 mg/mL, respectively. Moreover, the antimicrobial activity was noted against six pathogens that are represent to the most common pathogenic microbes, with the time required for killing of bacteria and unicellular fungi being 19 h and 61 h for filamentous fungi with remarket an excellent antioxidant activity.
GC-MS metabolites profiling of anethole-rich oils by different extraction techniques: antioxidant, cytotoxicity and in-silico enzymes inhibitory insights
GC-MS profiling and metabolomics study of anise and star anise oils obtained by hydrodistillation, n-hexane, and microwave-assisted extraction methods were conducted herein. Trans-anethole was the major phenylpropanoid in both oils. Principal component and hierarchical cluster analyses revealed a clear separation of different extraction methods. Microwave-assisted star anise oil (MSA) revealed the highest anethole content (93.78%). MSA oil showed antioxidant activity using DPPH and ABTS assays, this was verified via an in-silico docking study of its major compounds on human tyrosinase and NAD(P)H oxidase. Trans-anethole displayed the best fitting scores (−8.9 and −10.1 Kcal/mole, respectively). MSA oil showed promising cytotoxic activity on different cell lines, mainly the cervical (HeLa) cell lines. Cell cycle inhibition at the G0-G1 phase was observed with an early apoptotic effect of the oil on HeLa cells. Trans-anethole achieved the best docking scores (−7.9, −9.3 and −9.9 Kcal/mole) for in-silico study on EGFR, CDK2 and CDK4 enzymes engaged in cancer, respectively.
Synthesis and Bioactivity of Thiosemicarbazones Containing Adamantane Skeletons
Reaction of 4-(1-adamantyl)-3-thiosemicarbazide (1) with numerous substituted acetophenones and benzaldehydes yielded the corresponding thiosemicarbazones containing adamantane skeletons. The synthesized compounds were evaluated for their in vitro activities against some Gram-positive and Gram-negative bacteria, and the fungus Candida albicans, and cytotoxicity against four cancer cell lines (Hep3B, HeLa, A549, and MCF-7). All of them showed good antifungal activity against Candida albicans. Compounds 2c, 2d, 2g, 2j and 3a, 3e, 3g displayed significant inhibitory activity against Enterococcus faecalis. Compounds 2a, 2e, 2h, 2k and 3j had moderate inhibitory potency against Staphylococcus aureus. Compounds 2a, 2e and 2g found so good inhibitory effect on Bacillus cereus. Compounds 2d and 2h, which contain (ortho) hydroxyl groups on the phenyl ring, were shown to be good candidates as potential agents for killing the tested cancer cell lines, i.e., Hep3B, A549, and MCF-7. Compounds 2a–c, 2f, 2g, 2j, 2k, 3g, and 3i were moderate inhibitors against MCF-7.
Synthesis, characterization and cytotoxic evaluation of metal complexes derived from new N′-(2-cyanoacetyl)isonicotinohydrazide
The novel ligand (H 2 L), N’-(2-cyanoacetyl)isonicotinohydrazide, has been synthesized via reacting the isonicotinic hydrazide with 1-cyanoacetyl-3,5-dimethylpyrazole. The keto-form of the free ligand has been evoked from its spectral data. Based on elemental analyses and mass spectra, the ligand formed 1:1 (M: L) metal complexes with the acetate salts of Cu(II), Co(II), Ni(II) and Zn(II). The complexes’ spectral analyses revealed that the ligand behaved as a mononegative bidentate via the hydrazonyl N 1 and deprotonated enolized acetyl oxygen. Moreover, the DFT quantum chemical calculations revealed that the ligand had higher HOMO and lower LUMO energies than metal complexes, implying an electron donating character. Furthermore, the in vitro anticancer activity against HepG2 and HCT-116 cell lines displayed that the ligand was more potent than doxorubicin against both cell lines, although the metal complexes displayed lower efficacy.