Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
320 result(s) for "DC-SIGN protein"
Sort by:
DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist
The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLR S ) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2 + Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.
Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies
SARS-CoV-2 infection—which involves both cell attachment and membrane fusion—relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract 1 – 3 , suggesting that there may be additional mechanisms facilitating infection. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid–binding immunoglobulin-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the amino-terminal domain or to the conserved site at the base of the receptor-binding domain, while poorly neutralizing infection of ACE2-overexpressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the receptor binding motif, while potently neutralizing infection of ACE2-overexpressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike, promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies. C-type lectins and SIGLEC1 function as attachment receptors for SARS-CoV-2 and enhance ACE2-mediated infection.
ACE2-Independent Alternative Receptors for SARS-CoV-2
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.
C-type lectin receptors in the control of T helper cell differentiation
Key Points C-type lectin receptors (CLRs) are efficient pattern-recognition receptors (PRRs) that interact with pathogens via carbohydrate structures, leading to enhanced antigen presentation as well as modulation of T helper cell (T H cell) differentiation, collectively inducing pathogen-tailored adaptive immune responses. Crosstalk between innate signalling by CLRs and other PRRs, as well as other receptors such as type I interferon receptor (IFNAR), enhances the diversity of T H cell responses to pathogens. Engagement of the CLR dectin 1 by fungi induces various intracellular signalling pathways that cooperate to induce efficient T H 1 and T H 17 cell responses, which are crucial for antifungal immunity. DC-SIGN (DC-specific ICAM3-grabbing non-integrin), another CLR, induces specific signalling cascades for distinct pathogens, according to the carbohydrate ligand recognized. The recognition of mannose on intracellular pathogens such as fungi, viruses and mycobacteria leads to protective T H 1 cell responses when triggered together with Toll-like receptor (TLR) signalling. By contrast, parasitic fucose-containing ligands induce both T H 2 and T follicular helper (T FH ) cell responses (which are necessary for humoral immunity) during crosstalk of DC-SIGN signalling with TLR and IFNAR signalling. CLR triggering also contributes to pathogenic disorders; dectin 2 engagement by allergens originating from fungi or house dust mites leads to allergic T H 2 cell responses, whereas triggering of macrophage-inducible C-type lectin receptor (MINCLE) by pathogenic Fonsecaea spp. fungi represses T H 1 cell responses, thereby promoting fungal dissemination. CLRs have previously been used in vaccine strategies for their antigen-processing capacity. Our advanced knowledge of the signalling pathways by which CLRs direct adaptive immunity now provides a powerful tool to add a novel level of sophistication to the design of vaccines. In particular, the very specific T FH cell responses that are induced by CLRs such as DC-SIGN and CLEC9A could greatly improve the generation of broadly neutralizing antibodies against viruses such as HIV-1. Here, the authors discuss the role of C-type lectin receptor signalling pathways in the control of T helper cell differentiation and examine how these receptors and pathways can be harnessed for vaccine strategies. Pathogen recognition by C-type lectin receptors (CLRs) expressed by dendritic cells is important not only for antigen presentation, but also for the induction of appropriate adaptive immune responses via T helper (T H ) cell differentiation. CLRs act either by themselves or in cooperation with other receptors, such as other CLRs, Toll-like receptors and interferon receptors, to induce signalling pathways that trigger specialized cytokine programmes for polarization of T H cell differentiation. In this Review, we discuss how triggering of the prototypical CLRs leads to distinct pathogen-tailored T H cell responses and how we can harness our expanding knowledge for vaccine design and the treatment of inflammatory and malignant diseases.
Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus
Glycans are involved in various life processes and represent critical targets of biomedical developments. Nevertheless, the accessibility to long glycans with precise structures remains challenging. Here we report on the synthesis of glycans consisting of [→4)-α-Rha-(1 → 3)-β-Man-(1 → ] repeating unit, which are relevant to the O -antigen of Bacteroides vulgatus , a common component of gut microbiota. The optimal combination of assembly strategy, protecting group arrangement, and glycosylation reaction has enabled us to synthesize up to a 128-mer glycan. The synthetic glycans are accurately characterized by advanced NMR and MS approaches, the 3D structures are defined, and their potent binding activity with human DC-SIGN, a receptor associated with the gut lymphoid tissue, is disclosed. Glycans are abundant biomolecules that mediate essential biological processes, but their chemical synthesis is challenging. Here, the authors report the synthesis of glycans up to a 128-mer, which represents the O -antigen of Bacteroides vulgatus lipopolysaccharide and one of the longest synthetic glycans to date.
Signalling through C-type lectin receptors: shaping immune responses
Key Points Crosstalk between pattern recognition receptors (PRRs) expressed by dendritic cells orchestrates T helper (T H ) cell differentiation through the induction of specific cytokine expression profiles, tailored to invading pathogens. C-type lectin receptors (CLRs) have an important role in orchestrating the induction of signalling pathways that regulate adaptive immune responses. CLRs can control adaptive immunity at various levels by inducing signalling on their own, through crosstalk with other PRRs or by inducing carbohydrate-specific signalling pathways. DC-specific ICAM3-grabbing non-integrin (DC-SIGN) interacts with mannose-carrying pathogens including Mycobacterium tuberculosis , HIV-1, measles virus and Candida albicans to activate the serine/threonine protein kinase RAF1. RAF1 signalling leads to the acetylation of Toll-like receptor (TLR)-activated nuclear factor-κB (NF-κB) subunit p65 and affects cytokine expression, such as inducing the upregulation of interleukin-10 (IL-10). DC-associated C-type lectin 1 (dectin 1) triggering by a broad range of fungal pathogens, such as C. albicans , Aspergillus fumigatus and Pneumocystis carinii , results in protective antifungal immunity through the crosstalk of two independent signalling pathways — one through spleen tyrosine kinase (SYK) and one through RAF1 — that are essential for the expression of T H 1 and T H 17 cell polarizing cytokines. Crosstalk between the SYK and RAF1 pathways is both synergistic and antagonizing to fine-tune NF-κB activity: although Ser276 phosphorylation of p65 leads to enhanced transcriptional activity of p65 itself through acetylation, it also inhibits the transcriptional activity of the NF-κB subunit RELB by sequestering it in p65–RELB dimers, which are transcriptionally inactive. The diversity in CLR-mediated signalling provides some major challenges for the researches to elucidate and manipulate the signalling properties of this exciting family of receptors. However, the recent advances strongly support the use of CLR targeting vaccination strategies using dendritic cells to induce or redirect adaptive immune responses as well as improve antigen delivery. Here, Teunis Geijtenbeek and Sonja Gringhuis discuss the role of the signalling pathways induced by C-type lectin receptors in determining T helper cell lineage commitment and describe how these pathways can be exploited for the development of new vaccination strategies. C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce signalling pathways that directly activate nuclear factor-κB, whereas other CLRs affect signalling by Toll-like receptors. Dissecting these signalling pathways and their effects on host immune cells is essential to understand the molecular mechanisms involved in the induction of adaptive immune responses. In this Review we describe the role of CLR signalling in regulating adaptive immunity and immunopathogenesis and discuss how this knowledge can be harnessed for the development of innovative vaccination approaches.
COVID-19, Renin-Angiotensin System and Endothelial Dysfunction
The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1–9 and Ang 1–7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.
Protection against symptomatic dengue infection by neutralizing antibodies varies by infection history and infecting serotype
Dengue viruses (DENV1–4) are the most prevalent arboviruses in humans and a major public health concern. Understanding immune mechanisms that modulate DENV infection outcome is critical for vaccine development. Neutralizing antibodies (nAbs) are an essential component of the protective immune response, yet their measurement often relies on a single cellular substrate and partially mature virions, which does not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we analyze 125 samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long-standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without DC-SIGN and with mature or partially mature virions, we find that nAb potency and the protective NT50 cutoff are greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depends on prior infection history and infecting serotype. Finally, we uncover variations in nAb composition that contribute to protection from symptomatic infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection for vaccines and natural infections. There is still a need to improve understanding of dengue-specific immunity. Here, by analyzing the antibody response in a pediatric cohort the authors show that the protective capacity of neutralizing antibodies depends on infection history and serotype, but its estimation varies by assay condition and virion maturation.
The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to Mycobacterium tuberculosis
DC-SIGN (CD209/CLEC4L) is a C-type lectin receptor (CLR) that serves as a reliable cell-surface marker of interleukin 4 (IL-4)-activated human macrophages [M(IL-4)], which historically represent the most studied subset within the M2 spectrum of macrophage activation. Although DC-SIGN plays important roles in (Mtb) interactions with dendritic cells, its contribution to the Mtb-macrophage interaction remains poorly understood. Since high levels of IL-4 are correlated with tuberculosis (TB) susceptibility and progression, we investigated the role of DC-SIGN in M(IL-4) macrophages in the TB context. First, we demonstrate that DC-SIGN expression is present both in CD68 macrophages found in tuberculous pulmonary lesions of non-human primates, and in the CD14 cell population isolated from pleural effusions obtained from TB patients (TB-PE). Likewise, we show that DC-SIGN expression is accentuated in M(IL-4) macrophages derived from peripheral blood CD14 monocytes isolated from TB patients, or in macrophages stimulated with acellular TB-PE, arguing for the pertinence of DC-SIGN-expressing macrophages in TB. Second, using a siRNA-mediated gene silencing approach, we performed a transcriptomic analysis of DC-SIGN-depleted M(IL-4) macrophages and revealed the upregulation of pro-inflammatory signals in response to challenge with Mtb, as compared to control cells. This pro-inflammatory gene signature was confirmed by RT-qPCR, cytokine/chemokine-based protein array, and ELISA analyses. We also found that inactivation of DC-SIGN renders M(IL-4) macrophages less permissive to Mtb intracellular growth compared to control cells, despite the equal level of bacteria uptake. Last, at the molecular level, we show that DC-SIGN interferes negatively with the pro-inflammatory response and control of Mtb intracellular growth mediated by another CLR, Dectin-1 (CLEC7A). Collectively, this study highlights a dual role for DC-SIGN as, on the one hand, being a host factor granting advantage for Mtb to parasitize macrophages and, on the other hand, representing a molecular switch to turn off the pro-inflammatory response in these cells to prevent potential immunopathology associated to TB.
Lactobacillus crispatus S-layer proteins modulate innate immune response and inflammation in the lower female reproductive tract
Lactobacillus species dominance of the vaginal microbiome is a hallmark of vaginal health. Pathogen displacement of vaginal lactobacilli drives innate immune activation and mucosal barrier disruption, increasing the risks of STI acquisition and, in pregnancy, of preterm birth. We describe differential TLR mediated activation of the proinflammatory transcription factor NF-κB by vaginal pathogens and commensals. Vaginal Lactobacillus strains associated with optimal health selectively interact with anti-inflammatory innate immune receptors whereas species associated with suboptimal health including L. iners and Gardnerella vaginalis interact with both pro- and anti-inflammatory receptors. Anti-inflammatory action of L. crispatus is regulated by surface layer protein (SLPs)-mediated shielding of TLR ligands and selective interaction with the anti-inflammatory receptor DC-SIGN. Detection of SLPs within cervicovaginal fluid samples is associated with decreased concentrations of pro-inflammatory cytokines in Lactobacillus crispatus -dominated samples. These data offer mechanistic insights into how vaginal microbiota modulate host immune response and thus reproductive health and disease states. Here, the authors show that vaginal lactobacilli associated with optimal health interact selectively with a restricted subset of anti-inflammatory receptors through their Surface Layer Proteins, both in vitro and in cervicovaginal fluids, correlating with lower maternal inflammation.