Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
359 result(s) for "DFT modeling"
Sort by:
Elucidating the Mechanism of Coumarin Homodimerization Using 3-Acetylcoumarin Derivatives
The current study is a continuation of our previous investigations into the radical homodimeric reaction mechanism of 3-acetylcoumarin. In the current study, the effects of different substituents on the coumarin ring of 3-acetylcoumarin are investigated both experimentally and theoretically. Several 3-acetylcoumarin derivatives (substituted at C-6, C-7, and C-8) were tested in the optimized reaction conditions under ultrasound irradiation, and biscoumarin species were isolated and characterized. The elucidation of the substituent’s effect was further investigated by means of DFT calculations (free-energy calculations, NBO analysis), both in the initial substituted coumarins and in the formed radicals. It was observed that the presence of substituents at the C-6 and C-8 positions in the coumarin moiety would not affect significantly the formation of a radical, while a group at position C-7 could either stabilize or destabilize the formed radical depending on the electronic properties of the substituent.
Time-resolved imaging and analysis of the electron beam-induced formation of an open-cage metallo-azafullerene
The visualization of single-molecule reactions provides crucial insights into chemical processes, and the ability to do so has grown with the advances in high-resolution transmission electron microscopy. There is currently a limited mechanistic understanding of chemical reactions under the electron beam. However, such reactions may enable synthetic methodologies that cannot be accessed by traditional organic chemistry methods. Here we demonstrate the synthetic use of the electron beam, by in-depth single-molecule, atomic-resolution, time-resolved transmission electron microscopy studies, in inducing the formation of a doubly holed fullerene-porphyrin cage structure from a well-defined benzoporphyrin precursor deposited on graphene. Through real-time imaging, we analyse the hybrid’s ability to host up to two Pb atoms, and subsequently probe the dynamics of the Pb–Pb binding motif in this exotic metallo-organic cage structure. Through simulation, we conclude that the secondary electrons, which accumulate in the periphery of the irradiated area, can also initiate chemical reactions. Consequently, designing advanced carbon nanostructures by electron-beam lithography will depend on the understanding and limitations of molecular radiation chemistry.Visualizing single-molecule reactions using electron microscopy can be difficult because of potential radiation damage from the electron beam. Now, however, it has been shown that a high-energy electron beam can be used to synthesize metallo-azafullerenes. Atomic-resolution, time-resolved transmission electron microscopy, with the help of computational calculations, is used to monitor the metal-encapsulation dynamics.
QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents
Four new drug-based oxidovanadium (IV) complexes were synthesized and characterized by various spectral techniques, including molar conductance, magnetic measurements, and thermogravimetric analysis. Moreover, optimal structures geometry for all syntheses was obtained by the Gaussian09 program via the DFT/B3LYP method and showed that all of the metal complexes adopted a square-pyramidal structure. The essential parameters, electrophilicity (ω) value and expression for the maximum charge that an electrophile molecule may accept (ΔNmax) showed the practical biological potency of [VO(CTZ)2] 2H2O. The complexes were also evaluated for their propensity to bind to DNA through UV–vis absorption titration. The result revealed a high binding ability of the [VO(CTZ)2] 2H2O complex with Kb = 1.40 × 10⁶ M−1. Furthermore, molecular docking was carried out to study the behavior of the VO (II) complexes towards colon cancer cell (3IG7) protein. A quantitative structure–activity relationship (QSAR) study was also implemented for the newly synthesized compounds. The results of validation indicate that the generated QSAR model possessed a high predictive power (R2 = 0.97). Within the investigated series, the [VO(CTZ)2] 2H2O complex showed the greatest potential the most selective compound comparing to the stander chemotherapy drug.
Defect Formation, T-Atom Substitution and Adsorption of Guest Molecules in MSE-Type Zeolite Framework—DFT Modeling
We used computational modeling, based on Density Functional Theory, to help understand the preference for the formation of silanol nests and the substitution of Si by Ti or Al in different crystallographic positions of the MSE-type framework. All these processes were found to be energetically favorable by more than 100 kJ/mol. We suggested an approach for experimental identification of the T atom position in Ti-MCM-68 zeolite via simulation of infrared spectra of pyridine and acetonitrile adsorption at Ti. The modeling of adsorption of hydrogen peroxide at Ti center in the framework has shown that the molecular adsorption was preferred over the dissociative adsorption by 20 to 40 kJ/mol in the presence or absence of neighboring T-atom vacancy, respectively.
Hydrothermal Modification of Activated Carbon Enhances Acetaminophen Adsorption: Experimental and Computational Evidence of π–π Interaction Dominance
Acetaminophen (APAP) is a widely used pharmaceutical increasingly detected as a contaminant in aquatic environments due to its persistent nature and incomplete removal by conventional wastewater treatment. This study investigates the adsorption performance and mechanisms of commercial activated carbon (M) and its hydrothermally modified form (MH) for APAP removal. Characterization via elemental analysis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption isotherms revealed that hydrothermal treatment reduced oxygen content and enhanced micro- and mesopore volumes, resulting in a more homogeneous and carbon-rich surface. Batch adsorption experiments conducted under varying pH (5–7) and temperature (30–40 °C) conditions showed that MH achieved up to 94.3% APAP removal, outperforming the untreated carbon by more than 15%. Kinetic modeling indicated that adsorption followed a pseudo-second-order mechanism (R2 > 0.99), and isotherm data fitted best to the Langmuir model for MH and the Freundlich model for M, reflecting their differing surface properties. Adsorption was enhanced at lower pH and higher temperatures, consistent with an endothermic and pH-dependent mechanism. Complementary density functional theory (DFT) simulations confirmed that π–π stacking is the dominant interaction between APAP and the carbon surface. The most favorable configuration involved coplanar stacking with non-oxidized graphene (ΔG = −33 kJ/mol), while oxidized graphene models exhibited weaker interactions. Natural Bond Orbital (NBO) analysis further supported the prevalence of π–π interactions over dipole interactions. These findings suggest that surface deoxygenation and improved pore architecture achieved via hydrothermal treatment significantly enhance APAP adsorption, offering a scalable strategy for pharmaceutical pollutant removal in water treatment applications.
CuAAC-Based Synthesis, Copper-Catalyzed Aldehyde-Forming Hydrolytic Fission and Antiproliferative Evaluation of Novel Ferrocenoylamino-Substituted Triazole-Tethered Quinine–Chalcone Hybrids
A series of novel triazole-tethered ferrocenoylamino-substituted cinchona–chalcone hybrids along with two representative benzoylamino-substituted reference compounds were prepared by three methods of CuAAC chemistry. In line with the limited success or complete failure of attempted conversions with low catalyst loadings, by means of DFT modeling studies, we demonstrated that a substantial part of the Cu(I) ions can be chelated and thus trapped in the aroylamino-substituted cinchona fragment and all of the accessible coordinating sites of the chalcone residues. Accordingly, increased amounts of catalysts were used to achieve acceptable yields; however, the cycloadditions with para-azidochalcones were accompanied by partial or complete aldehyde-forming hydrolytic fission of the enone C=C bond in a substituent-, solvent- and copper load-dependent manner. The experienced hydrolytic stability of the hybrids obtained by cycloadditions with ortho-azidochalcones was interpreted in terms of relative energetics, DFT reactivity indices and MO analysis of simplified models of two isomer copper–enone complexes. The novel hybrids were evaluated on HeLa, MDA-MB-231 and A2780 cell lines and showed substantial activity at low-to-submicromolar concentrations. An organometallic model carrying 3,4,5-trimethoxyphenyl residue in the enone part with a para-disubstituted benzene ring in the central skeletal region was identified as the most potent antiproliferative lead, characterized by submicromolar IC50 values measured on the three investigated cells. The biological assays also disclosed that this ferrocenoylamino-containing lead compound displays a ca. two- to five-fold more substantial antiproliferative effect than its benzoylamino-substituted counterpart.
Synthesis, characterization and cytotoxic evaluation of metal complexes derived from new N′-(2-cyanoacetyl)isonicotinohydrazide
The novel ligand (H 2 L), N’-(2-cyanoacetyl)isonicotinohydrazide, has been synthesized via reacting the isonicotinic hydrazide with 1-cyanoacetyl-3,5-dimethylpyrazole. The keto-form of the free ligand has been evoked from its spectral data. Based on elemental analyses and mass spectra, the ligand formed 1:1 (M: L) metal complexes with the acetate salts of Cu(II), Co(II), Ni(II) and Zn(II). The complexes’ spectral analyses revealed that the ligand behaved as a mononegative bidentate via the hydrazonyl N 1 and deprotonated enolized acetyl oxygen. Moreover, the DFT quantum chemical calculations revealed that the ligand had higher HOMO and lower LUMO energies than metal complexes, implying an electron donating character. Furthermore, the in vitro anticancer activity against HepG2 and HCT-116 cell lines displayed that the ligand was more potent than doxorubicin against both cell lines, although the metal complexes displayed lower efficacy.
The Structural Characterisation and DFT-Aided Interpretation of Vibrational Spectra for Cyclo(l-Cys-d-Cys) Cyclic Dipeptide in a Solid State
Cyclic dipeptides with two intramolecular peptide bonds forming a six-membered 2,5-diketopiperazine ring are gaining significant attention due to their biological and chemical properties. Small changes in the local geometry of such molecules (from cis to trans) can lead to significant structural differences. This work presents the results of a study of cyclo(l-Cys-d-Cys), a dipeptide comprising two cysteine molecules in opposite chiral configurations, with the functional groups situated at both sides of the diketopiperazine ring. X-ray diffraction (XRD) experiment revealed that the molecule crystallises in the P-1 space group, which includes the centre of inversion. The IR and Raman vibrational spectra of the molecule were acquired and interpreted in terms of the potential energy distribution (PED) according to the results of density functional theory (DFT) calculations. The DFT-assisted analysis of energy frameworks for the hydrogen bond network within molecular crystals was performed to support the interpretation of X-ray structural data. The optimisation of the computational model based on three-molecule geometry sections from the crystallographic structure, selected to appropriately reflect the intermolecular interactions responsible for the formation of 1D molecular tapes in cyclo(l-Cys-d-Cys) crystal, allowed for better correspondence between theoretical and experimental vibrational spectra. This work can be considered the first complete structural characterisation of cyclo(l-Cys-d-Cys), complemented via vibrational spectroscopy results with full band assignment aided with the use of the DFT method.
Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character
Utilizing McMurry reactions of 4,4′-dihydroxybenzophenone with appropriate carbonyl compounds, a series of 4-Hydroxytamoxifen analogues were synthesized. Their cytotoxic activity was evaluated in vitro on four human malignant cell lines (MCF-7, MDA-MB 231, A2058, HT-29). It was found that some of these novel Tamoxifen analogues show marked cytotoxicity in a dose-dependent manner. The relative ROS-generating capability of the synthetized analogues was evaluated by cyclic voltammetry (CV) and DFT modeling studies. The results of cell-viability assays, CV measurements and DFT calculations suggest that the cytotoxicity of the majority of the novel compounds is mainly elicited by their interactions with cellular targets including estrogen receptors rather than triggered by redox processes. However, three novel compounds could be involved in ROS-production and subsequent formation of quinone-methide preventing proliferation and disrupting the redox balance of the treated cells. Among the cell lines studied, HT-29 proved to be the most susceptible to the treatment with compounds having ROS-generating potency.
Experimental and Theoretical Study on the Homodimerization Mechanism of 3-Acetylcoumarin
In the present study, the reaction conditions for homodimerization process of 3-acetylcoumarin were achieved under sonication using combination of zinc and metallic salt (ZnCl2 or Zn(OAc)2). Appropriate frequency and sound amplitude have been identified as significant variables for the initiation of the reaction. On the base of first principal calculations and experimental results, the mechanism of the reaction was investigated. The relative stability of the possible intermediates has been compared, including evaluation on the ionic and radical reaction pathways for the dimerization process. Theoretical results suggested that the radical mechanism is more favorable. The C-C bond formation between the calculated radical intermediates occurs spontaneously (∆G = −214 kJ/mol for ZnCl2, −163 kJ/mol in the case of Zn(OAc)2), which proves the possibility for the homodimerization of 3-acetylcoumarin via formation of radical species. Both experimental and theoretical data clarified the activation role of the solvent on the reactivity of the Zn-salt. The formation of complexes of solvent molecules with Zn-atom from the ZnCl2 reduces the energy barrier for the dissociation of Zn-Cl bond and facilitate the formation of the dimeric product.