Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,652
result(s) for
"DNA, Antisense - genetics"
Sort by:
Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape
by
Vigeolas, H
,
Neuhaus, H.E
,
Geigenberger, P
in
Adenosine Diphosphate
,
Adenosine Diphosphate - metabolism
,
Adenosine Triphosphate
2004
In oil-storing Brassica napus (rape) seeds, starch deposition occurs only transiently in the early stages of development, and starch is absent from mature seeds. This work investigates the influence of a reduction of ADP-Glc pyrophosphorylase (AGPase) on storage metabolism in these seeds. To manipulate the activity of AGPase in a seed-specific manner, a cDNA encoding the small subunit of AGPase was expressed in the sense or antisense orientation under the control of an embryo-specific thioesterase promoter. Lines were selected showing an embryo-specific decrease in AGPase due to antisense and cosuppression at different stages of development. At early developmental stages (25 days after flowering), a 50% decrease in AGPase activity was accompanied by similar decreases in starch content and the rate of starch synthesis measured by injecting 14C-Suc into seeds in planta. In parallel to inhibition of starch synthesis, the level of ADP-Glc decreased, whereas Glc 1-phosphate levels increased, providing biochemical evidence that inhibition of starch synthesis was due to repression of AGPase. At 25 days after flowering, repression of starch synthesis also led to a decrease in the rate of 14C-Suc degradation and its further metabolism via other metabolic pathways. This was not accompanied by an increase in the levels of soluble sugars, indicating that Suc import was inhibited in parallel. Flux through glycolysis, the activities of hexokinase, and inorganic pyrophosphate-dependent phosphofructokinase, and the adenylate energy state (ATP to ADP ratio) of the transgenic seeds decreased, indicating inhibition of glycolysis and respiration compared to wild type. This was accompanied by a marked decrease in the rate of storage lipid (triacylglycerol) synthesis and in the fatty acid content of seeds. In mature seeds, glycolytic enzyme activities, metabolite levels, and ATP levels remained unchanged, and the fatty acid content was only marginally lower compared to wild type, indicating that the influence of AGPase on carbon metabolism and oil accumulation was largely compensated for in the later stages of seed development. Results indicate that AGPase exerts high control over starch synthesis at early stages of seed development where it is involved in establishing the sink activity of the embryo and the onset of oil accumulation.
Journal Article
NanoFlares for the detection, isolation, and culture of live tumor cells from human blood
by
Angeloni, Nicholas L.
,
McMahon, Kaylin M.
,
Xu, Yilin
in
Base Sequence
,
Biological Sciences
,
Biomarkers, Tumor - genetics
2014
Metastasis portends a poor prognosis for cancer patients. Primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions. The analysis of cancer cells in blood—so-called circulating tumor cells (CTCs)—may provide unprecedented opportunities for metastatic risk assessment and investigation. NanoFlares are nanoconstructs that enable livecell detection of intracellular mRNA. NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood. They allow one to detect as few as 100 live cancer cells per mL of blood and subsequently culture those cells. This technique can also be used to detect CTCs in a murine model of metastatic breast cancer. As such, NanoFlares provide, to our knowledge, the first genetic-based approach for detecting, isolating, and characterizing live cancer cells from blood and may provide new opportunities for cancer diagnosis, prognosis, and personalized therapy.
Journal Article
Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo
by
Imashimizu, Masahiko
,
Oshima, Taku
,
Court, Donald L.
in
active sites
,
Animal Genetics and Genomics
,
Antisense RNA
2015
Background
Transcription elongation is frequently interrupted by pausing signals in DNA, with downstream effects on gene expression. Transcription errors also induce prolonged pausing, which can lead to a destabilized genome by interfering with DNA replication. Mechanisms of pausing associated with translocation blocks and misincorporation have been characterized
in vitro
, but not
in vivo
.
Results
We investigate the pausing pattern of RNA polymerase (RNAP) in
Escherichia coli
by a novel approach, combining native elongating transcript sequencing (NET-seq) with RNase footprinting of the transcripts (RNET-seq). We reveal that the G-dC base pair at the 5′ end of the RNA-DNA hybrid interferes with RNAP translocation. The distance between the 5′ G-dC base pair and the 3′ end of RNA fluctuates over a three-nucleotide width. Thus, the G-dC base pair can induce pausing in post-translocated, pre-translocated, and backtracked states of RNAP. Additionally, a CpG sequence of the template DNA strand spanning the active site of RNAP inhibits elongation and induces G-to-A errors, which leads to backtracking of RNAP. Gre factors efficiently proofread the errors and rescue the backtracked complexes. We also find that pausing events are enriched in the 5′ untranslated region and antisense transcription of mRNA genes and are reduced in rRNA genes.
Conclusions
In
E. coli
, robust transcriptional pausing involves RNAP interaction with G-dC at the upstream end of the RNA-DNA hybrid, which interferes with translocation. CpG DNA sequences induce transcriptional pausing and G-to-A errors.
Journal Article
Alternative transcription cycle for bacterial RNA polymerase
2020
RNA polymerases (RNAPs) transcribe genes through a cycle of recruitment to promoter DNA, initiation, elongation, and termination. After termination, RNAP is thought to initiate the next round of transcription by detaching from DNA and rebinding a new promoter. Here we use single-molecule fluorescence microscopy to observe individual RNAP molecules after transcript release at a terminator. Following termination, RNAP almost always remains bound to DNA and sometimes exhibits one-dimensional sliding over thousands of basepairs. Unexpectedly, the DNA-bound RNAP often restarts transcription, usually in reverse direction, thus producing an antisense transcript. Furthermore, we report evidence of this secondary initiation in live cells, using genome-wide RNA sequencing. These findings reveal an alternative transcription cycle that allows RNAP to reinitiate without dissociating from DNA, which is likely to have important implications for gene regulation.
In the canonical bacterial transcription, both nascent transcript and polymerase dissociate from template DNA. By employing multi-color single-molecule fluorescence imaging, here the authors show that RNA polymerases remain bound to DNA after the transcript release.
Journal Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
2025
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control.
Journal Article
CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells
2011
Compaction and looping of the ∼2.5-Mb Igh locus during V(D)J rearrangement is essential to allow all V H genes to be brought in proximity with D H -J H segments to create a diverse antibody repertoire, but the proteins directly responsible for this are unknown. Because CCCTC-binding factor (CTCF) has been demonstrated to be involved in long-range chromosomal interactions, we hypothesized that CTCF may promote the contraction of the Igh locus. ChIP sequencing was performed on pro-B cells, revealing colocalization of CTCF and Rad21 binding at ∼60 sites throughout the V H region and 2 other sites within the Igh locus. These numerous CTCF/cohesin sites potentially form the bases of the multiloop rosette structures at the Igh locus that compact during Ig heavy chain rearrangement. To test whether CTCF was involved in locus compaction, we used 3D-FISH to measure compaction in pro-B cells transduced with CTCF shRNA retroviruses. Reduction of CTCF binding resulted in a decrease in Igh locus compaction. Long-range interactions within the Igh locus were measured with the chromosomal conformation capture assay, revealing direct interactions between CTCF sites 5' of DFL16 and the 3' regulatory region, and also the intronic enhancer (Eμ), creating a D H -J H -Eμ-C H domain. Knockdown of CTCF also resulted in the increase of antisense transcription throughout the D H region and parts of the V H locus, suggesting a widespread regulatory role for CTCF. Together, our findings demonstrate that CTCF plays an important role in the 3D structure of the Igh locus and in the regulation of antisense germline transcription and that it contributes to the compaction of the Igh locus.
Journal Article
An autonomous molecular computer for logical control of gene expression
by
Benenson, Yaakov
,
Adar, Rivka
,
Shapiro, Ehud
in
Antineoplastic Agents - administration & dosage
,
Antineoplastic Agents - chemistry
,
Antineoplastic Agents - pharmacology
2004
Early biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems
1
,
2
,
3
,
4
,
5
,
6
,
7
. Recently, simple molecular-scale autonomous programmable computers were demonstrated
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for ‘logical’ control of biological processes. Here we describe an autonomous biomolecular computer that, at least
in vitro
, logically analyses the levels of messenger RNA species, and in response produces a molecule capable of affecting levels of gene expression. The computer operates at a concentration of close to a trillion computers per microlitre and consists of three programmable modules: a computation module, that is, a stochastic molecular automaton
12
,
13
,
14
,
15
,
16
,
17
; an input module, by which specific mRNA levels or point mutations regulate software molecule concentrations, and hence automaton transition probabilities; and an output module, capable of controlled release of a short single-stranded DNA molecule. This approach might be applied
in vivo
to biochemical sensing, genetic engineering and even medical diagnosis and treatment. As a proof of principle we programmed the computer to identify and analyse mRNA of disease-related genes
18
,
19
,
20
,
21
,
22
associated with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA molecule modelled after an anticancer drug.
Journal Article
Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis
by
Zhang, Zhijin
,
Huang, Rongfeng
in
1-aminocyclopropane-1-carboxylic acid
,
Adaptation, Physiological
,
Adaptation, Physiological - drug effects
2010
Increasing numbers of investigations indicate that ethylene response factor (ERF) proteins play important roles in plant stress responses via interacting with GCC box and/dehydration-responsive element/C-repeat to modulate expression of downstream genes, but the detailed regulatory mechanism is not well elucidated. Revealing the modulation pathway of ERF proteins in response to stresses is vital. Previously, we showed that tomato ERF protein TERF2/LeERF2 is ethylene inducible, and ethylene production is suppressed in antisense TERF2/LeERF2 tomatoes, suggesting that TERF2/LeERF2 functions as a positive regulator in ethylene biosynthesis. In this paper, we report that regulation of TERF2/LeERF2 in ethylene biosynthesis is associated with enhanced freezing tolerance of tobacco and tomato. Analysis of gene expression showed that cold slowly induces expression of TERF2/LeERF2 in tomato, implying that TERF2/LeERF2 may be involved in cold response through ethylene modulation. To test the hypothesis, we first observed that overexpressing TERF2/LeERF2 tobaccos not only enhances freezing tolerance via activating expression of cold-related genes, but also significantly reduces electrolyte leakage. In addition, with treatment of ethylene biosynthesis inhibitor or ethylene receptor antagonist, we then showed that blockage of ethylene biosynthesis or the ethylene signaling pathway decreases freezing tolerance of overexpressing TERF2/LeERF2 tobaccos. Moreover, the results from tomatoes showed that overexpressing TERF2/LeERF2 tomatoes enhances while antisense TERF2/LeERF2 transgenic lines decreases freezing tolerance, and application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid restored freezing tolerance of antisense lines. Therefore our results establish that TERF2/LeERF2 enhances freezing tolerance of plants through ethylene biosynthesis and the ethylene signaling pathway.
Journal Article
Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees
by
Yang, Lei
,
Jiang, Chunmei
,
Zhang, Hongxia
in
Arabidopsis
,
Biomechanical Phenomena
,
Cell Wall - chemistry
2015
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6–yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees.
Journal Article
nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript
2011
The H19 gene, which localizes within a chromosomal region on human chromosome 11p15 that is commonly lost in Wilms tumor (WT), encodes an imprinted untranslated RNA. However, the biological significance of the H19 noncoding transcript remains unresolved because replacement of the RNA transcript with a neocassette has no obvious phenotypic effect. Here we show that the human H19 locus also encodes a maternally expressed, translated gene, antisense to the known H19 transcript, which is conserved in primates. This gene, termed HOTS for H19 opposite tumor suppressor, encodes a protein that localizes to the nucleus and nucleolus and that interacts with the human enhancer of rudimentary homolog (ERH) protein. WTs that show loss of heterozygosity of 11p15 or loss of imprinting of IGF2 also silence HOTS (7/7 and 10/10, respectively). Overexpression of HOTS inhibits Wilms, rhabdoid, rhabdomyosarcoma, and choriocarcinoma tumor cell growth, and silencing HOTS by RNAi increases in vitro colony formation and in vivo tumor growth. These results demonstrate that the human H19 locus harbors an imprinted gene encoding a tumor suppressor protein within the long-sought WT2 locus.
Journal Article