Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,786 result(s) for "DNA, Single-Stranded - metabolism"
Sort by:
Rolling circle amplification (RCA)-based DNA hydrogel
DNA hydrogels have unique properties, including sequence programmability, precise molecular recognition, stimuli-responsiveness, biocompatibility and biodegradability, that have enabled their use in diverse applications ranging from material science to biomedicine. Here, we describe a rolling circle amplification (RCA)-based synthesis of 3D DNA hydrogels with rationally programmed sequences and tunable physical, chemical and biological properties. RCA is a simple and highly efficient isothermal enzymatic amplification strategy to synthesize ultralong single-stranded DNA that benefits from mild reaction conditions, and stability and efficiency in complex biological environments. Other available methods for synthesis of DNA hydrogels include hybridization chain reactions, which need a large amount of hairpin strands to produce DNA chains, and PCR, which requires temperature cycling. In contrast, the RCA process is conducted at a constant temperature and requires a small amount of circular DNA template. In this protocol, the polymerase phi29 catalyzes the elongation and displacement of DNA chains to amplify DNA, which subsequently forms a 3D hydrogel network via various cross-linking strategies, including entanglement of DNA chains, multi-primed chain amplification, hybridization between DNA chains, and hybridization with functional moieties. We also describe how to use the protocol for isolation of bone marrow mesenchymal stem cells and cell delivery. The whole protocol takes ~2 d to complete, including hydrogel synthesis and applications in cell isolation and cell delivery. Yang and colleagues describe a rolling circle amplification-based approach for synthesizing multifunctional physically and dynamically cross-linked DNA hydrogels for efficient cell isolation and delivery.
Single-strained DNA aptamers mask RhD antigenic epitopes on human RhD+ red blood cells to escape alloanti-RhD immunological recognition
Rhesus D− (RhD−) individuals should receive Rh-matched blood to prevent hemolytic anemia. However, there is a shortage of RhD− blood. This study aimed to generate RhD antigen-specific single-stranded DNA (ssDNA) aptamers, and test their efficacy in masking RhD antigens on RhD+ red blood cells (RBCs) to prevent their immunoreactivity in vitro. In the present study, ssDNA aptamer candidates were synthesized as a central randomized sequence of 40 nucleotides (nt) flanked by 21-nt primer hybridization sequences. The functional aptamers were screened using the cell-based systematic evolution of ligands by exponential enrichment technique and RhD+ RBCs. Two bioactive ssDNA aptamers significantly inhibited the binding of an anti-RhD antibody to RhD+ RBCs and bound to RhD antigens with high affinity (dissociation constant values of 580.5±142.0 and 737.7±161.8 nM, respectively). Furthermore, treatment with both ssDNA aptamers (500 pmol) effectively masked RhD antigens on 4,000,000 RhD+ RBCs to prevent human anti-RhD alloantibody-mediated binding, RBC agglutination and monocyte recognition in vitro. Collectively, such data suggested that these ssDNA aptamers may be feasible for masking RhD antigens on RBCs, and thus valuable for prevention or at least amelioration of RhD+-related hemolytic anemia in RhD− individuals.
The mechanism of eukaryotic CMG helicase activation
In vitro experiments, using purified proteins and an assay that detects DNA unwinding, reveal the mechanism of activation of eukaryotic DNA replication. Unravelling DNA replication DNA replication in eukaryotes begins with the loading of a double hexamer of minichromosome maintenance (MCM) proteins onto the origin. Replication is then activated by separating the double hexamer into single-hexamer MCM rings that, together with Cdc45 and GINS, make up the CMG helicase, which is required for DNA unwinding. John Diffley and colleagues describe the role of ATP hydrolysis in regulating double-hexamer assembly and then CMG formation. Notably, there is an inactive CMG state that precedes the helicase-active CMG form that can translocate along the unwound DNA strand. The active CMG moves unidirectionally so that the two helicases pass by each other to establish bidirectional replication. The initiation of eukaryotic DNA replication occurs in two discrete stages 1 : first, the minichromosome maintenance (MCM) complex assembles as a head-to-head double hexamer that encircles duplex replication origin DNA during G1 phase; then, ‘firing factors’ convert each double hexamer into two active Cdc45–MCM–GINS helicases (CMG) during S phase. This second stage requires separation of the two origin DNA strands and remodelling of the double hexamer so that each MCM hexamer encircles a single DNA strand. Here we show that the MCM complex, which hydrolyses ATP during double-hexamer formation 2 , 3 , remains stably bound to ADP in the double hexamer. Firing factors trigger ADP release, and subsequent ATP binding promotes stable CMG assembly. CMG assembly is accompanied by initial DNA untwisting and separation of the double hexamer into two discrete but inactive CMG helicases. Mcm10, together with ATP hydrolysis, then triggers further DNA untwisting and helicase activation. After activation, the two CMG helicases translocate in an ‘N terminus-first’ direction, and in doing so pass each other within the origin; this requires that each helicase is bound entirely to single-stranded DNA. Our experiments elucidate the mechanism of eukaryotic replicative helicase activation, which we propose provides a fail-safe mechanism for bidirectional replisome establishment.
Phase separation by ssDNA binding protein controlled via protein–protein and protein–DNA interactions
Bacterial single-stranded (ss)DNA-binding proteins (SSB) are essential for the replication and maintenance of the genome. SSBs share a conserved ssDNA-binding domain, a less conserved intrinsically disordered linker (IDL), and a highly conserved C-terminal peptide (CTP) motif that mediates a wide array of protein–protein interactions with DNA-metabolizing proteins. Here we show that the Escherichia coli SSB protein forms liquid–liquid phase-separated condensates in cellular-like conditions through multifaceted interactions involving all structural regions of the protein. SSB, ssDNA, and SSB-interacting molecules are highly concentrated within the condensates, whereas phase separation is overall regulated by the stoichiometry of SSB and ssDNA. Together with recent results on subcellular SSB localization patterns, our results point to a conserved mechanism by which bacterial cells store a pool of SSB and SSB-interacting proteins. Dynamic phase separation enables rapid mobilization of this protein pool to protect exposed ssDNA and repair genomic loci affected by DNA damage.
53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ
53BP1 governs a specialized, context-specific branch of the classical non-homologous end joining DNA double-strand break repair pathway. Mice lacking 53bp1 (also known as Trp53bp1 ) are immunodeficient owing to a complete loss of immunoglobulin class-switch recombination 1 , 2 , and reduced fidelity of long-range V(D)J recombination 3 . The 53BP1-dependent pathway is also responsible for pathological joining events at dysfunctional telomeres 4 , and its unrestricted activity in Brca1- deficient cellular and tumour models causes genomic instability and oncogenesis 5 – 7 . Cells that lack core non-homologous end joining proteins are profoundly radiosensitive 8 , unlike 53BP1-deficient cells 9 , 10 , which suggests that 53BP1 and its co-factors act on specific DNA substrates. Here we show that 53BP1 cooperates with its downstream effector protein REV7 to promote non-homologous end joining during class-switch recombination, but REV7 is not required for 53BP1-dependent V(D)J recombination. We identify shieldin—a four-subunit putative single-stranded DNA-binding complex comprising REV7, c20orf196 (SHLD1), FAM35A (SHLD2) and FLJ26957 (SHLD3)—as the factor that explains this specificity. Shieldin is essential for REV7-dependent DNA end-protection and non-homologous end joining during class-switch recombination, and supports toxic non-homologous end joining in Brca1- deficient cells, yet is dispensable for REV7-dependent interstrand cross-link repair. The 53BP1 pathway therefore comprises distinct double-strand break repair activities within chromatin and single-stranded DNA compartments, which explains both the immunological differences between 53bp1- and Rev7- deficient mice and the context specificity of the pathway. The specificity of 53BP1 and its co-factors for particular DNA substrates during non-homologous end joining (NHEJ) derives from REV7–shieldin, a four-subunit DNA-binding complex that is required for REV7-dependent NHEJ but not for REV7-dependent DNA interstrand cross-link repair.
Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins
Background Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Results Here we describe Easi- CRISPR ( E fficient a dditions with s sDNA i nserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi -CRISPR generates correctly targeted conditional and insertion alleles in 8.5–100% of the resulting live offspring. Conclusions Easi- CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi- CRISPR offers a comprehensive means of building large-scale Cre- LoxP animal resources.
BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage
The BRCA2 tumor suppressor protects genome integrity by promoting homologous recombination-based repair of DNA breaks, stability of stalled DNA replication forks and DNA damage-induced cell cycle checkpoints. BRCA2 deficient cells display the radio-resistant DNA synthesis (RDS) phenotype, however the mechanism has remained elusive. Here we show that cells without BRCA2 are unable to sufficiently restrain DNA replication fork progression after DNA damage, and the underrestrained fork progression is due primarily to Primase-Polymerase (PRIMPOL)-mediated repriming of DNA synthesis downstream of lesions, leaving behind single-stranded DNA gaps. Moreover, we find that BRCA2 associates with the essential DNA replication factor MCM10 and this association suppresses PRIMPOL-mediated repriming and ssDNA gap formation, while having no impact on the stability of stalled replication forks. Our findings establish an important function for BRCA2, provide insights into replication fork control during the DNA damage response, and may have implications in tumor suppression and therapy response. Tumor suppressor BRCA2 is known to stabilize and restart stalled DNA replication forks. Here the authors show that BRCA2 is recruited to the replication fork through its interaction with MCM10 and inhibits Primase-Polymerase-mediated repriming, lesion bypass and single strand DNA gap formation after DNA damage.
53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in
In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair—which requires a 3′ overhang—and classical non-homologous end joining, which can join unresected ends 1 , 2 . BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1) 3 – 8 . When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7–SHLD1–SHLD2–SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors 4 , 6 – 9 . Here we address the mechanism by which 53BP1–RIF1–shieldin regulates the generation of recombinogenic 3′ overhangs. We report that CTC1–STN1–TEN1 (CST) 10 , a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)–primase 11 , is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST–Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin. 53BP1 and shieldin recruit the CTC1–STN1–TEN1 complex and polymerase-α to sites of DNA damage to help control the repair of double-strand breaks.
Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis
Retrotransposons are highly enriched in the animal genome 1 – 3 . The activation of retrotransposons can rewrite host DNA information and fundamentally impact host biology 1 – 3 . Although developmental activation of retrotransposons can offer benefits for the host, such as against virus infection, uncontrolled activation promotes disease or potentially drives ageing 1 – 5 . After activation, retrotransposons use their mRNA as templates to synthesize double-stranded DNA for making new insertions in the host genome 1 – 3 , 6 . Although the reverse transcriptase that they encode can synthesize the first-strand DNA 1 – 3 , 6 , how the second-strand DNA is generated remains largely unclear. Here we report that retrotransposons hijack the alternative end-joining (alt-EJ) DNA repair process of the host for a circularization step to synthesize their second-strand DNA. We used Nanopore sequencing to examine the fates of replicated retrotransposon DNA, and found that 10% of them achieve new insertions, whereas 90% exist as extrachromosomal circular DNA (eccDNA). Using eccDNA production as a readout, further genetic screens identified factors from alt-EJ as essential for retrotransposon replication. alt-EJ drives the second-strand synthesis of the long terminal repeat retrotransposon DNA through a circularization process and is therefore necessary for eccDNA production and new insertions. Together, our study reveals that alt-EJ is essential in driving the propagation of parasitic genomic retroelements. Our study uncovers a conserved function of this understudied DNA repair process, and provides a new perspective to understand—and potentially control—the retrotransposon life cycle. Retrotransposons hijack the alternative end-joining DNA repair process of the host for a circularization step to synthesize their second-strand DNA.
Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble
Type III-A CRISPR-Cas systems are prokaryotic RNA-guided adaptive immune systems that use a protein-RNA complex, Csm, for transcription-dependent immunity against foreign DNA. Csm can cleave RNA and single-stranded DNA (ssDNA), but whether it targets one or both nucleic acids during transcription elongation is unknown. Here, we show that binding of a Thermus thermophilus (T . thermophilus ) Csm (TthCsm) to a nascent transcript in a transcription elongation complex (TEC) promotes tethering but not direct contact of TthCsm with RNA polymerase (RNAP). Biochemical experiments show that both TthCsm and Staphylococcus epidermidis ( S. epidermidis ) Csm (SepCsm) cleave RNA transcripts, but not ssDNA, at the transcription bubble. Taken together, these results suggest that Type III systems primarily target transcripts, instead of unwound ssDNA in TECs, for immunity against double-stranded DNA (dsDNA) phages and plasmids. This reveals similarities between Csm and eukaryotic RNA interference, which also uses RNA-guided RNA targeting to silence actively transcribed genes. Type III CRISPR-Cas systems are able to target transcriptionally active DNA sequences in phages and plasmids. Here, the authors reveal the mechanism of the target nucleic acid preference of Type III-A CRISPR-Cas complexes at the transcription bubble by a combination of structural and biochemical approaches.