Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,163 result(s) for "DNA - adverse effects"
Sort by:
Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials
The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins. We did two phase 1, randomised, open-label trials involving healthy adult volunteers. The VRC 319 trial, done in three centres, assessed plasmid VRC5288 (Zika virus and Japanese encephalitis virus chimera), and the VRC 320, done in one centre, assessed plasmid VRC5283 (wild-type Zika virus). Eligible participants were aged 18–35 years in VRC19 and 18–50 years in VRC 320. Participants were randomly assigned 1:1 by a computer-generated randomisation schedule prepared by the study statistician. All participants received intramuscular injection of 4 mg vaccine. In VRC 319 participants were assigned to receive vaccinations via needle and syringe at 0 and 8 weeks, 0 and 12 weeks, 0, 4, and 8 weeks, or 0, 4, and 20 weeks. In VRC 320 participants were assigned to receive vaccinations at 0, 4, and 8 weeks via single-dose needle and syringe injection in one deltoid or split-dose needle and syringe or needle-free injection with the Stratis device (Pharmajet, Golden, CO, USA) in each deltoid. Both trials followed up volunteers for 24 months for the primary endpoint of safety, assessed as local and systemic reactogenicity in the 7 days after each vaccination and all adverse events in the 28 days after each vaccination. The secondary endpoint in both trials was immunogenicity 4 weeks after last vaccination. These trials are registered with ClinicalTrials.gov, numbers NCT02840487 and NCT02996461. VRC 319 enrolled 80 participants (20 in each group), and VRC 320 enrolled 45 participants (15 in each group). One participant in VRC 319 and two in VRC 320 withdrew after one dose of vaccine, but were included in the safety analyses. Both vaccines were safe and well tolerated. All local and systemic symptoms were mild to moderate. In both studies, pain and tenderness at the injection site was the most frequent local symptoms (37 [46%] of 80 participants in VRC 319 and 36 [80%] of 45 in VRC 320) and malaise and headache were the most frequent systemic symptoms (22 [27%] and 18 [22%], respectively, in VRC 319 and 17 [38%] and 15 [33%], respectively, in VRC 320). For VRC5283, 14 of 14 (100%) participants who received split-dose vaccinations by needle-free injection had detectable positive antibody responses, and the geometric mean titre of 304 was the highest across all groups in both trials. VRC5283 was well tolerated and has advanced to phase 2 efficacy testing. Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Efficacy Trial of a DNA/rAd5 HIV-1 Preventive Vaccine
In an efficacy trial, 2504 persons at high risk for HIV-1 acquisition received either a DNA prime–recombinant adenovirus type 5 boost (DNA/rAd5) vaccine or placebo. The vaccine regimen did not reduce either HIV-1 acquisition or viral load. The epidemic infection caused by the human immunodeficiency virus type 1 (HIV-1) is now in its fourth decade, with an estimated 2.5 million new infections occurring annually worldwide. 1 The number of newly infected persons, although diminishing, outpaces the number of patients who initiate antiretroviral therapy. Despite a number of successful prevention interventions that have been reported, including preexposure prophylaxis and treatment as prevention, 2 – 9 ultimate control of the HIV epidemic will most likely come only with the development of a safe and effective preventive vaccine. This goal has proved to be elusive. Of the efficacy trials of HIV vaccines that . . .
Safety and tolerability of HIV-1 multiantigen pDNA vaccine given with IL-12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus HIV Gag vaccine in healthy volunteers in a randomized, controlled clinical trial
The addition of plasmid cytokine adjuvants, electroporation, and live attenuated viral vectors may further optimize immune responses to DNA vaccines in heterologous prime-boost combinations. The objective of this study was to test the safety and tolerability of a novel prime-boost vaccine regimen incorporating these strategies with different doses of IL-12 plasmid DNA adjuvant. In a phase 1 study, 88 participants received an HIV-1 multiantigen (gag/pol, env, nef/tat/vif) DNA vaccine (HIV-MAG, 3000 μg) co-administered with IL-12 plasmid DNA adjuvant at 0, 250, 1000, or 1500 μg (N = 22/group) given intramuscularly with electroporation (Ichor TriGrid™ Delivery System device) at 0, 1 and 3 months; followed by attenuated recombinant vesicular stomatitis virus, serotype Indiana, expressing HIV-1 Gag (VSV-Gag), 3.4 ⊆ 107 plaque-forming units (PFU), at 6 months; 12 others received placebo. Injections were in both deltoids at each timepoint. Participants were monitored for safety and tolerability for 15 months. The dose of IL-12 pDNA did not increase pain scores, reactogenicity, or adverse events with the co-administered DNA vaccine, or following the VSV-Gag boost. Injection site pain and reactogenicity were common with intramuscular injections with electroporation, but acceptable to most participants. VSV-Gag vaccine often caused systemic reactogenicity symptoms, including a viral syndrome (in 41%) of fever, chills, malaise/fatigue, myalgia, and headache; and decreased lymphocyte counts 1 day after vaccination. HIV-MAG DNA vaccine given by intramuscular injection with electroporation was safe at all doses of IL-12 pDNA. The VSV-Gag vaccine at this dose was associated with fever and viral symptoms in some participants, but the vaccine regimens were safe and generally well-tolerated. Clinical Trials.gov NCT01578889.
Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial
Ebola virus and Marburg virus cause serious disease outbreaks with high case fatality rates. We aimed to assess the safety and immunogenicity of two investigational DNA vaccines, one (EBO vaccine) encoding Ebola virus Zaire and Sudan glycoproteins and one (MAR) encoding Marburg virus glycoprotein. RV 247 was a phase 1b, double-blinded, randomised, placebo-controlled clinical trial in Kampala, Uganda to examine the safety and immunogenicity of the EBO and MAR vaccines given individually and concomitantly. Healthy adult volunteers aged 18–50 years were randomly assigned (5:1) to receive three injections of vaccine or placebo at weeks 0, 4, and 8, with vaccine allocations divided equally between three active vaccine groups: EBO vaccine only, MAR vaccine only, and both vaccines. The primary study objective was to investigate the safety and tolerability of the vaccines, as assessed by local and systemic reactogenicity and adverse events. We also assessed immunogenicity on the basis of antibody responses (ELISA) and T-cell responses (ELISpot and intracellular cytokine staining assays) 4 weeks after the third injection. Participants and investigators were masked to group assignment. Analysis was based on the intention-to-treat principle. This trial is registered at ClinicalTrials.gov, number NCT00997607. 108 participants were enrolled into the study between Nov 2, 2009, and April 15, 2010. All 108 participants received at least one study injection (including 100 who completed the injection schedule) and were included in safety and tolerability analyses; 107 for whom data were available were included in the immunogenicity analyses. Study injections were well tolerated, with no significant differences in local or systemic reactions between groups. The vaccines elicited antibody and T-cell responses specific to the glycoproteins received and we detected no differences between the separate and concomitant use of the two vaccines. 17 of 30 (57%, 95% CI 37–75) participants in the EBO vaccine group had an antibody response to the Ebola Zaire glycoprotein, as did 14 of 30 (47%, 28–66) in the group that received both vaccines. 15 of 30 (50%, 31–69) participants in the EBO vaccine group had an antibody response to the Ebola Sudan glycoprotein, as did 15 of 30 (50%, 31–69) in the group that received both vaccines. Nine of 29 (31%, 15–51) participants in the MAR vaccine groups had an antibody response to the Marburg glycoprotein, as did seven of 30 (23%, 10–42) in the group that received both vaccines. 19 of 30 (63%, 44–80) participants in the EBO vaccine group had a T-cell response to the Ebola Zaire glycoprotein, as did 10 of 30 (33%, 17–53) in the group that received both vaccines. 13 of 30 (43%, 25–63) participants in the EBO vaccine group had a T-cell response to the Ebola Sudan glycoprotein, as did 10 of 30 (33%, 17–53) in the group that received both vaccines. 15 of 29 (52%, 33–71) participants in the MAR vaccine group had a T-cell response to the Marburg glycoprotein, as did 13 of 30 (43%, 25–63) in the group that received both vaccines. This study is the first Ebola or Marburg vaccine trial done in Africa, and the results show that, given separately or together, both vaccines were well tolerated and elicited antigen-specific humoral and cellular immune responses. These findings have contributed to the accelerated development of more potent Ebola virus vaccines that encode the same wild-type glycoprotein antigens as the EBO vaccine, which are being assessed during the 2014 Ebola virus disease outbreak in west Africa. US Department of Defense Infectious Disease Clinical Research Program and US National Institutes of Health Intramural Research Program.
Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery
Background. DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed. Methods. HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX ® -B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1-uninfected adults 18-50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools. Results. Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4⁺ or CD8⁺ T-cell response after the second vaccination, and 88.9% developed a CD4⁺ or CD8⁺ T-cell response after the third vaccination. Conclusions. Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans.
Therapeutic DNA Vaccination Using In Vivo Electroporation Followed by Standard of Care Therapy in Patients With Genotype 1 Chronic Hepatitis C
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 μg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ–producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2–10 weeks 0.6–2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1–30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.
Safety and immunogenicity of investigational seasonal influenza hemagglutinin DNA vaccine followed by trivalent inactivated vaccine administered intradermally or intramuscularly in healthy adults: An open-label randomized phase 1 clinical trial
Seasonal influenza results in significant morbidity and mortality worldwide, but the currently licensed inactivated vaccines generally have low vaccine efficacies and could be improved. In this phase 1 clinical trial, we compared seasonal influenza vaccine regimens with different priming strategies, prime-boost intervals, and administration routes to determine the impact of these variables on the resulting antibody response. Between August 17, 2012 and January 25, 2013, four sites enrolled healthy adults 18-70 years of age. Subjects were randomized to receive one of the following vaccination regimens: trivalent hemagglutinin (HA) DNA prime followed by trivalent inactivated influenza vaccine (IIV3) boost with a 3.5 month interval (DNA-IIV3), IIV3 prime followed by IIV3 boost with a 10 month interval (IIV3-IIV3), or concurrent DNA and IIV3 prime followed by IIV3 boost with a 10 month interval (DNA/IIV3-IIV3). Each regimen was additionally stratified by an IIV3 administration route of either intramuscular (IM) or intradermal (ID). DNA vaccines were administered by a needle-free jet injector (Biojector). Study objectives included evaluating the safety and tolerability of each regimen and measuring the antibody response by hemagglutination inhibition (HAI). Three hundred and sixteen subjects enrolled. Local reactogenicity was mild to moderate in severity, with higher frequencies recorded following DNA vaccine administered by Biojector compared to IIV3 by either route (p <0.02 for pain, swelling, and redness) and following IIV3 by ID route compared to IM route (p <0.001 for swelling and redness). Systemic reactogenicity was similar between regimens. Though no overall differences were observed between regimens, the highest titers post boost were observed in the DNA-IIV3 group by ID route and in the IIV3-IIV3 group by IM route. All vaccination regimens were found to be safe and tolerable. While there were no overall differences between regimens, the DNA-IIV3 group by ID route, and the IIV3-IIV3 group by IM route, showed higher responses compared to the other same-route regimens.
Immunogenicity and safety of a booster dose of the COVID-19 DNA vaccine in healthy adults aged 18 years and above: a single-center, randomized, observer-blind, placebo-controlled phase 2 trial
Background A two-dose primary regimen of INO-4800 DNA vaccine demonstrated only modest immunogenicity in the previous phase 2 clinical trial. This booster study aimed to evaluate the immunogenicity and safety of a booster dose of INO-4800 in adults previously received two-dose regimen of INO-4800. Methods Healthy adults who received two doses of INO-4800 (1.0 mg or 2.0 mg) at least 12 months ago in a previous phase 2 trial were eligible for this booster study, conducted in Danyang, Jiangsu Province, China. Eligible participants were stratified by primary vaccination dose (1.0 mg or 2.0 mg) and age group (18–59 years or ≥ 60 years), and subsequently randomized in a 1:1 ratio to receive a third dose of INO-4800 or placebo at the same dosage as previously administered. The primary immunogenicity endpoint was the geometric mean concentrations (GMCs) of spike-binding antibodies on day 14 post-booster. The primary safety endpoint was the occurrence of adverse reactions within 14 days. Results Between December 20 and 23, 2021, 200 eligible participants were enrolled. 100 eligible participants who received two doses of 2.0 mg INO-4800 were randomly assigned (1:1) to receive a third dose of 2.0 mg INO-4800 ( n  = 50) or 2.0 mg placebo ( n  = 50). Another 100 eligible participants who received two doses of 1.0 mg INO-4800 were randomly assigned (1:1) to receive a third dose of 1.0 mg INO-4800 ( n  = 50) or 1.0 mg placebo ( n  = 50). On day 14 post-booster, the GMCs of spike-binding antibodies were significantly higher in 2.0 mg INO-4800 group ( 260.1 BAU/mL) compared to placebo group (2.8 BAU/mL, p  < 0.001), and in 1.0 mg INO-4800 group (104.2 BAU/mL) compared to placebo group (2.5 BAU/mL, p  < 0.001). The most common local reactions were injection site redness, occurring at rate of 16.0% in the INO-4800 groups.All adverse reactions were mild to moderate in severity and occurred within 14 days post-booster. No vaccine related serious adverse events were reported. Conclusions The booster regimen of one dose INO-4800 is safe and modestly immunogenic in individuals who previously received a two- dose regimen of INO-4800, with the 2.0 mg INO-4800 demonstrating superior immunogenicity compared to the 1.0 mg INO-4800. Trial registration www.chictr.org.cn , identifier is ChiCTR2100054324.(December 13 2021).
Optimizing the immunogenicity of HIV prime-boost DNA-MVA-rgp140/GLA vaccines in a phase II randomized factorial trial design
We evaluated the safety and immunogenicity of (i) an intradermal HIV-DNA regimen given with/without intradermal electroporation (EP) as prime and (ii) the impact of boosting with modified vaccinia virus Ankara (HIV-MVA) administered with or without subtype C CN54rgp140 envelope protein adjuvanted with Glucopyranosyl Lipid A (GLA-AF) in volunteers from Tanzania and Mozambique. Healthy HIV-uninfected adults (N = 191) were randomized twice; first to one of three HIV-DNA intradermal priming regimens by needle-free ZetaJet device at weeks 0, 4 and 12 (Group I: 2x0.1mL [3mg/mL], Group II: 2x0.1mL [3mg/mL] plus EP, Group III: 1x0.1mL [6mg/mL] plus EP). Second the same volunteers received 108 pfu HIV-MVA twice, alone or combined with CN54rgp140/GLA-AF, intramuscularly by syringe, 16 weeks apart. Additionally, 20 volunteers received saline placebo. Vaccinations and electroporation did not raise safety concerns. After the last vaccination, the overall IFN-γ ELISpot response rate to either Gag or Env was 97%. Intradermal electroporation significantly increased ELISpot response rates to HIV-DNA-specific Gag (66% group I vs. 86% group II, p = 0.026), but not to the HIV-MVA vaccine-specific Gag or Env peptide pools nor the magnitude of responses. Co-administration of rgp140/GLA-AF with HIV-MVA did not impact the frequency of binding antibody responses against subtype B gp160, C gp140 or E gp120 antigens (95%, 99%, 79%, respectively), but significantly enhanced the magnitude against subtype B gp160 (2700 versus 300, p<0.001) and subtype C gp140 (24300 versus 2700, p<0.001) Env protein. At relatively low titers, neutralizing antibody responses using the TZM-bl assay were more frequent in vaccinees given adjuvanted protein boost. Intradermal electroporation increased DNA-induced Gag response rates but did not show an impact on Env-specific responses nor on the magnitude of responses. Co-administration of HIV-MVA with rgp140/GLA-AF significantly enhanced antibody responses.
DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity
Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. ClinicalTrials.govNCT00870987.