Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,899
result(s) for
"DNA Copy Number Variations"
Sort by:
Copy number evolution and its relationship with patient outcome—an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial
2021
Structural chromosomal changes including copy number aberrations (CNAs) are a major feature of multiple myeloma (MM), however their evolution in context of modern biological therapy is not well characterized. To investigate acquisition of CNAs and their prognostic relevance in context of first-line therapy, we profiled tumor diagnosis–relapse pairs from 178 NCRI Myeloma XI (ISRCTN49407852) trial patients using digital multiplex ligation-dependent probe amplification. CNA profiles acquired at relapse differed substantially between MM subtypes: hyperdiploid (HRD) tumors evolved predominantly in branching pattern vs. linear pattern in t(4;14) vs. stable pattern in t(11;14). CNA acquisition also differed between subtypes based on
CCND
expression, with a marked enrichment of acquired del(17p) in
CCND2
over
CCND1
tumors. Acquired CNAs were not influenced by high-dose melphalan or lenalidomide maintenance randomization. A branching evolution pattern was significantly associated with inferior overall survival (OS; hazard ratio (HR) 2.61,
P
= 0.0048). As an individual lesion, acquisition of gain(1q) at relapse was associated with shorter OS, independent of other risk markers or time of relapse (HR = 2.00;
P
= 0.021). There is an increasing need for rational therapy sequencing in MM. Our data supports the value of repeat molecular profiling to characterize disease evolution and inform management of MM relapse.
Journal Article
The octopus genome and the evolution of cephalopod neural and morphological novelties
2015
Octopus bimaculoides
genome and transcriptome sequencing demonstrated that a core gene repertoire broadly similar to that of other invertebrate bilaterians is accompanied by expansions in the protocadherin and C2H2 zinc-finger transcription factor families and large-scale genome rearrangements closely associated with octopus-specific transposable elements.
Octopus genome reveals secrets of a complex cephalopod
Octopuses have been called 'the most intelligent invertebrate', with a host of complex behaviours, and a nervous system comparable in size to that of mammals but organized in a very different manner. It had been hypothesized that, as in vertebrates, whole-genome duplication contributed to the evolution of this complex nervous system. Caroline Albertin
et al
. have sequenced the genome and multiple transcriptomes of the California two-spot octopus (
Octopus bimaculoides
) and find no evidence for such duplications but there are large-scale genome rearrangements closely associated with octopus-specific transposable elements. The core developmental and neuronal gene repertoire turns out to be broadly similar to that of other invertebrates, apart from expansions in two gene families formerly thought to be uniquely expanded in vertebrates — the protocadherins (cell-adhesion molecules that regulate neural development) and the C2H2 superfamily of zinc-finger transcription factors.
Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire
1
. They have the largest nervous systems among the invertebrates
2
and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system
1
,
3
. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus,
Octopus bimaculoides
. We found no evidence for hypothesized whole-genome duplications in the octopus lineage
4
,
5
,
6
. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described
7
, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.
Journal Article
Low-pass genome sequencing versus chromosomal microarray analysis: implementation in prenatal diagnosis
by
Wong, Hoi Kin
,
Leung, Tak Yeung
,
Tsang, Kathy Yin Ching
in
Biomedical and Life Sciences
,
Biomedicine
,
Birth defects
2020
Emerging studies suggest that low-pass genome sequencing (GS) provides additional diagnostic yield of clinically significant copy-number variants (CNVs) compared with chromosomal microarray analysis (CMA). However, a prospective back-to-back comparison evaluating accuracy, efficacy, and incremental yield of low-pass GS compared with CMA is warranted.
A total of 1023 women undergoing prenatal diagnosis were enrolled. Each sample was subjected to low-pass GS and CMA for CNV analysis in parallel. CNVs were classified according to guidelines of the American College of Medical Genetics and Genomics.
Low-pass GS not only identified all 124 numerical disorders or pathogenic or likely pathogenic (P/LP) CNVs detected by CMA in 121 cases (11.8%, 121/1023), but also defined 17 additional and clinically relevant P/LP CNVs in 17 cases (1.7%, 17/1023). In addition, low-pass GS significantly reduced the technical repeat rate from 4.6% (47/1023) for CMA to 0.5% (5/1023) and required less DNA (50 ng) as input.
In the context of prenatal diagnosis, low-pass GS identified additional and clinically significant information with enhanced resolution and increased sensitivity of detecting mosaicism as compared with the CMA platform used. This study provides strong evidence for applying low-pass GS as an alternative prenatal diagnostic test.
Journal Article
The landscape of somatic copy-number alteration across human cancers
by
Donovan, Jerry
,
Rubin, Mark A.
,
Ebert, Benjamin L.
in
631/208/2489/68
,
631/208/737
,
692/699/67
2010
A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the
BCL2
family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the
MCL1
and
BCL2L1
anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.
Cancer genomics refined
Two Articles in this issue add major data sets to the growing picture of the cancer genome. Bignell
et al
. analysed a large number of homozygous gene deletions in a collection of 746 publicly available cancer cell lines. Combined with information about hemizygous deletions of the same genes, the data suggest that many deletions found in cancer reflect the position of a gene at a fragile site in the genome, rather than as a recessive cancer gene whose loss confers a selective growth advantage. Beroukhim
et al
. present the largest data set to date on somatic copy-number variations across more than 3,000 specimens of human primary cancers. Many alterations are shared between multiple tumour types. Functional experiments demonstrate an oncogenic role for the apoptosis genes
MCL1
and
BCL2L1
that are associated with amplifications found in many cancers.
One way of discovering genes with key roles in cancer development is to identify genomic regions that are frequently altered in human cancers. Here, high-resolution analyses of somatic copy-number alterations (SCNAs) in numerous cancer specimens provide an overview of regions of focal SCNA that are altered at significant frequency across several cancer types. An oncogenic function is also found for the anti-apoptosis genes
MCL1
and
BCL2L1
, which reside in amplified genome regions in many cancers.
Journal Article
Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
2020
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
Journal Article
Titin copy number variations associated with dominant inherited phenotypes
2024
BackgroundTitinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype–phenotype associations.MethodsOur study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients’ muscles and performed genotype–phenotype inheritance association study by combining the clinical and biological data of these eight families.ResultsSeven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype–phenotype associations of titinopathies.ConclusionIdentifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype–phenotype associations of titinopathies, mainly distal myopathy in most of the patients.
Journal Article
Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism
by
Miyazaki, Taisuke
,
Wan, Vivian
,
Wang, Samuel S.-H.
in
631/378/1595
,
631/378/1689/1373
,
631/378/2632/1368
2014
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.
Impairments of cerebellar-dependent motor control and learning are implicated in some forms of autism spectrum disorder (ASD). In this study, the authors provide a characterization of the motor deficits and cerebellar function abnormalities in a transgenic mouse model of ASD.
Journal Article
Mitochondrial DNA copy number variation across three generations: a possible biomarker for assessing perinatal outcomes
2023
Background
Mitochondria have their own circular multi-copy genome (mtDNA), and abnormalities in the copy number are implicated in mitochondrial dysfunction, which contributes to a variety of aging-related pathologies. However, not much is known about the genetic correlation of mtDNA copy number across multiple generations and its physiological significance.
Methods
We measured the mtDNA copy number in cord blood or peripheral blood from 149 three-generation families, specifically the newborns, parents, and grandparents, of 149 families, totaling 1041 individuals. All of the biological specimens and information were provided by the Tohoku Medical Megabank Project in Japan. We also analyzed their maternal factors during pregnancy and neonatal outcomes.
Results
While the maternal peripheral blood mtDNA copy number was lower than that of other adult family members, it was negatively correlated with cord blood mtDNA copy number in male infants. Also, cord blood mtDNA copy numbers were negatively correlated with perinatal outcomes, such as gestation age, birth weight, and umbilical cord length, for both male and female neonates. Furthermore, the mtDNA copy number in the infants born to mothers who took folic acid supplements during pregnancy would be lower than in the infants born to mothers who did not take them.
Conclusions
This data-driven study offers the most comprehensive view to date on the genetic and physiological significance of mtDNA copy number in cord blood or peripheral blood taken from three generations, totaling more than 1000 individuals. Our findings indicate that mtDNA copy number would be one of the transgenerational biomarkers for assessing perinatal outcomes, as well as that appropriate medical interventions could improve the outcomes via quantitative changes in mtDNA.
Journal Article
Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences
by
Freimer, Nelson
,
Kuusisto, Johanna
,
Ganel, Liron
in
Adult
,
Aged
,
Apoptosis Regulatory Proteins - genetics
2021
Background
Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718).
Results
We identified two loci significantly associated with MT-CN variation: a common variant at the
MYB-HBS1L
locus (P = 1.6 × 10
−8
), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the
TMBIM1
gene (P = 3.0 × 10
−8
), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10
−21
) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition.
Conclusion
These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.
Journal Article
Multiple wheat genomes reveal global variation in modern breeding
2020
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (
Triticum
spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome
1
, and the lack of genome-assembly data for multiple wheat lines
2
,
3
. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses
4
,
5
. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of
Sm1
6
, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.
Comparison of multiple genome assemblies from wheat reveals extensive diversity that results from the complex breeding history of wheat and provides a basis for further potential improvements to this important food crop.
Journal Article