Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,860 result(s) for "DNA-Binding Proteins - physiology"
Sort by:
Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion
A new system to monitor the effects of nucleosome depletion in Xenopus egg extracts reveals that nucleosomes are required for spindle assembly and for recruitment of nuclear pore complex (NPC) components to the nuclear envelope for NPC formation. Nucleosomes are the fundamental unit of chromatin, but analysis of transcription-independent nucleosome functions has been complicated by the gene-expression changes resulting from histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation and by analyzing the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that although nucleosome-free DNA can recruit nuclear-envelope membranes, nucleosomes are required for spindle assembly and for formation of the lamina and of nuclear pore complexes (NPCs). We show that, in addition to the Ran G-nucleotide exchange factor RCC1, ELYS, the initiator of NPC formation, fails to associate with naked DNA but directly binds histone H2A–H2B dimers and nucleosomes. Tethering ELYS and RCC1 to DNA bypasses the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS.
CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees
Forest trees display a perennial growth behavior characterized by a multiple-year delay in flowering and, in temperate regions, an annual cycling between growth and dormancy. We show here that the CO/FT regulatory module, which controls flowering time in response to variations in daylength in annual plants, controls flowering in aspen trees. Unexpectedly, however, it also controls the short-day-induced growth cessation and bud set occurring in the fall. This regulatory mechanism can explain the ecogenetic variation in a highly adaptive trait: the critical daylength for growth cessation displayed by aspen trees sampled across a latitudinal gradient spanning northern Europe.
CTCF Binding at the H19 Imprinting Control Region Mediates Maternally Inherited Higher-Order Chromatin Conformation to Restrict Enhancer Access to Igf2
It is thought that the H19 imprinting control region (ICR) directs the silencing of the maternally inherited Igf2 allele through a CTCF-dependent chromatin insulator. The ICR has been shown to interact physically with a silencer region in Igf2, differentially methylated region (DMR)1, but the role of CTCF in this chromatin loop and whether it restricts the physical access of distal enhancers to Igf2 is not known. We performed systematic chromosome conformation capture analyses in the Igf2/H19 region over >160 kb, identifying sequences that interact physically with the distal enhancers and the ICR. We found that, on the paternal chromosome, enhancers interact with the Igf2 promoters but that, on the maternal allele, this is prevented by CTCF binding within the H19 ICR. CTCF binding in the maternal ICR regulates its interaction with matrix attachment region (MAR)3 and DMR1 at Igf2, thus forming a tight loop around the maternal Igf2 locus, which may contribute to its silencing. Mutation of CTCF binding sites in the H19 ICR leads to loss of CTCF binding and de novo methylation of a CTCF target site within Igf2 DMR1, showing that CTCF can coordinate regional epigenetic marks. This systematic chromosome conformation capture analysis of an imprinting cluster reveals that CTCF has a critical role in the epigenetic regulation of higher-order chromatin structure and gene silencing over considerable distances in the genome.
Coupling of Cell Migration with Neurogenesis by Proneural bHLH Factors
After cell birth, almost all neurons in the mammalian central nervous system migrate. It is unclear whether and how cell migration is coupled with neurogenesis. Here we report that proneural basic helix-loop-helix (bHLH) transcription factors not only initiate neuronal differentiation but also potentiate cell migration. Mechanistically, proneural bHLH factors regulate the expression of genes critically involved in migration, including down-regulation of RhoA small GTPase and up-regulation of doublecortin and p35, which, in turn, modulate the actin and microtubule cytoskeleton assembly and enable newly generated neurons to migrate. In addition, we report that several DNA-binding-deficient proneural genes that fail to initiate neuronal differentiation still activate migration, whereas a different mutation of a proneural gene that causes a failure in initiating cell migration still leads to robust neuronal differentiation. Collectively, these data suggest that transcription programs for neurogenesis and migration are regulated by bHLH factors through partially distinct mechanisms.
Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought
In this study, we used a loss-of-function approach to elucidate the functions of three Arabidopsis type B response regulators (ARRs)—namely ARR1, ARR10, and ARR12—in regulating the Arabidopsis plant responses to drought. The arr1,10,12 triple mutant showed a significant increase in drought tolerance versus WT plants, as indicated by its higher relative water content and survival rate on drying soil. This enhanced drought tolerance of arr1,10,12 plants can be attributed to enhanced cell membrane integrity, increased anthocyanin biosynthesis, abscisic acid (ABA) hypersensitivity, and reduced stomatal aperture, but not to altered stomatal density. Further drought-tolerance tests of lower-order double and single mutants indicated that ARR1, ARR10, and ARR12 negatively and redundantly control plant responses to drought, with ARR1 appearing to bear the most critical function among the three proteins. In agreement with these findings, a comparative genome-wide analysis of the leaves of arr1,10,12 and WT plants under both normal and dehydration conditions suggested a cytokinin (CK) signaling-mediated network controlling plant adaptation to drought via many dehydration/drought- and/or ABA-responsive genes that can provide osmotic adjustment and protection to cellular and membrane structures. Expression of all three ARR genes was repressed by dehydration and ABA treatments, inferring that plants down-regulate these genes as an adaptive mechanism to survive drought. Collectively, our results demonstrate that repression of CK response, and thus CK signaling, is one of the strategies plants use to cope with water deficit, providing novel insight for the design of drought-tolerant plants by genetic engineering.
Capping protein regulators fine-tune actin assembly dynamics
Key Points Capping protein (CP) is a major regulator of actin assembly dynamics via the capping of actin filament barbed ends. The capping activity of CP can be regulated by a number of different proteins and phospholipids in various ways, some direct and others indirect. The capping protein interacting (CPI) motif is a 30-amino acid region necessary and sufficient to bind and inhibit CP. This motif is found in a set of unrelated proteins, many of which are involved in membrane interactions. CARMIL (capping protein, ARP2/3 and myosin I linker) family proteins contain a CPI motif, and they also contain a separate CARMIL-specific interacting (CSI) motif. In CARMIL, the CPI motif is necessary for distinct cellular functions, such as macropinocytosis. The CPI and CSI motifs are unstructured in the unbound state, but they adopt a specific structure when they bind to CP, applying themselves to the surface of CP. The CPI and CSI motifs decrease the actin capping activity of CP via an allosteric mechanism. The complex of a CPI motif-containing protein with CP retains a low level of capping activity, which raises the possibility that CPI motif-containing proteins may target CP to certain cellular locations, in addition to, or as an alternative to, simply decreasing the capping activity. Vertebrates have three distinct conserved CARMIL genes, which seem to have distinct functions in cells. Of note, CARMIL2 localizes with vimentin filaments, representing a potential novel link between the actin and intermediate filament cytoskeleton systems. The actin capping activity of capping protein (CP) is indirectly regulated by competing with other factors for filament binding, or directly by factors that bind CP and sterically inhibit its interactions with filaments. Other proteins interact with CP through their 'capping protein interaction' (CPI) motif and modulate its activity via allosteric effects. Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
SMC complexes: from DNA to chromosomes
Key Points A living organism's genomic DNA, which is contained in each cell, is typically far longer than the organism itself. This poses a formidable challenge for DNA compaction in the cell nucleus and its segregation during cell division. Members of the structural maintenance of chromosomes (SMC) family are abundant and universal chromosomal protein components. They take on crucial roles in compacting and segregating both prokaryotic and eukaryotic genomes. SMC complexes are ring-shaped ATPases that bind to chromosomes by topological embrace. They are thought to structure and safeguard chromosomes by engaging in interactions between more than one fragment of DNA. They also recruit and interact with additional chromosomal proteins. The condensin complex may compact chromosomes by providing dynamic links between its binding sites, whereas cohesin has evolved special features to establish enduring links between newly replicated sister chromatids. Mutations in SMC complexes and their regulators are the cause of grave human malignancies, including cancer and developmental disorders. SMC (structural maintenance of chromosomes) complexes are found in all living organisms and include condensin, cohesin and the SMC5–SMC6 complex. Recent mechanistic insight into these ring-shaped protein machines, which topologically encircle DNA, shed light on how they function to mediate chromosome condensation, sister chromatid cohesion and DNA repair. SMC (structural maintenance of chromosomes) complexes — which include condensin, cohesin and the SMC5–SMC6 complex — are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology.
RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11
Ferroptosis, an iron-dependent nonapoptotic cell death, is a highly regulated tumor suppressing process. However, functions and mechanisms of RNA-binding proteins in regulation of evasion of ferroptosis during lung cancer progression are still largely unknown. Here, we report that the RNA-binding protein RBMS1 participates in lung cancer development via mediating ferroptosis evasion. Through an shRNA-mediated systematic screen, we discovered that RBMS1 is a key ferroptosis regulator. Clinically, RBMS1 was elevated in lung cancer and its high expression was associated with reduced patient survival. Conversely, depletion of RBMS1 inhibited lung cancer progression both in vivo and in vitro. Mechanistically, RBMS1 interacted with the translation initiation factor eIF3d directly to bridge the 3'- and 5'-UTR of SLC7A11. RBMS1 ablation inhibited the translation of SLC7A11, reduced SLC7A11-mediated cystine uptake, and promoted ferroptosis. In a drug screen that targeted RBMS1, we further uncovered that nortriptyline hydrochloride decreased the level of RBMS1, thereby promoting ferroptosis. Importantly, RBMS1 depletion or inhibition by nortriptyline hydrochloride sensitized radioresistant lung cancer cells to radiotherapy. Our findings established RBMS1 as a translational regulator of ferroptosis and a prognostic factor with therapeutic potential and clinical value.
Guided nuclear exploration increases CTCF target search efficiency
The enormous size of mammalian genomes means that for a DNA-binding protein the number of nonspecific, off-target sites vastly exceeds the number of specific, cognate sites. How mammalian DNA-binding proteins overcome this challenge to efficiently locate their target sites is not known. Here, through live-cell single-molecule tracking, we show that CCCTC-binding factor, CTCF, is repeatedly trapped in small zones that likely correspond to CTCF clusters, in a manner that is largely dependent on an internal RNA-binding region (RBR i ). We develop a new theoretical model called anisotropic diffusion through transient trapping in zones to explain CTCF dynamics. Functionally, transient RBR i -mediated trapping increases the efficiency of CTCF target search by ~2.5-fold. Overall, our results suggest a ‘guided’ mechanism where CTCF clusters concentrate diffusing CTCF proteins near cognate binding sites, thus increasing the local ON-rate. We suggest that local guiding may allow DNA-binding proteins to more efficiently locate their target sites. Single-particle tracking and mathematical modeling methods reveal the searching mechanism of CTCF for its cognate sites on DNA. An RNA-binding region in CTCF mediates its trapping in small zones and increases its target search efficiency.
Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tissue depots is associated with improved metabolic phenotypes. Thus, understanding the differences in cell biology and function of these different adipose cell types and depots may be critical to the development of new therapies for metabolic disease. Here, we found that Prdm16, a brown adipose determination factor, is selectively expressed in subcutaneous white adipocytes relative to other white fat depots in mice. Transgenic expression of Prdm16 in fat tissue robustly induced the development of brown-like adipocytes in subcutaneous, but not epididymal, adipose depots. Prdm16 transgenic mice displayed increased energy expenditure, limited weight gain, and improved glucose tolerance in response to a high-fat diet. shRNA-mediated depletion of Prdm16 in isolated subcutaneous adipocytes caused a sharp decrease in the expression of thermogenic genes and a reduction in uncoupled cellular respiration. Finally, Prdm16 haploinsufficiency reduced the brown fat phenotype in white adipose tissue stimulated by β-adrenergic agonists. These results demonstrate that Prdm16 is a cell-autonomous determinant of a brown fat-like gene program and thermogenesis in subcutaneous adipose tissues.