Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,047 result(s) for "Dactinomycin - pharmacology"
Sort by:
Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA-linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)-activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission.
Actinobacteria from Antarctica as a source for anticancer discovery
Although many advances have been achieved to treat aggressive tumours, cancer remains a leading cause of death and a public health problem worldwide. Among the main approaches for the discovery of new bioactive agents, the prospect of microbial secondary metabolites represents an effective source for the development of drug leads. In this study, we investigated the actinobacterial diversity associated with an endemic Antarctic species, Deschampsia antarctica , by integrated culture-dependent and culture-independent methods and acknowledged this niche as a reservoir of bioactive strains for the production of antitumour compounds. The 16S rRNA-based analysis showed the predominance of the Actinomycetales order, a well-known group of bioactive metabolite producers belonging to the Actinobacteria phylum. Cultivation techniques were applied, and 72 psychrotolerant Actinobacteria strains belonging to the genera Actinoplanes , Arthrobacter , Kribbella , Mycobacterium , Nocardia , Pilimelia , Pseudarthrobacter , Rhodococcus , Streptacidiphilus , Streptomyces and Tsukamurella were identified. The secondary metabolites were screened, and 17 isolates were identified as promising antitumour compound producers. However, the bio-guided assay showed a pronounced antiproliferative activity for the crude extracts of Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653. The TGI and LC 50 values revealed the potential of these natural products to control the proliferation of breast (MCF-7), glioblastoma (U251), lung/non-small (NCI-H460) and kidney (786-0) human cancer cell lines. Cinerubin B and actinomycin V were the predominant compounds identified in Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653, respectively. Our results suggest that the rhizosphere of D. antarctica represents a prominent reservoir of bioactive actinobacteria strains and reveals it as an important environment for potential antitumour agents.
Hexokinases inhibit death receptor–dependent apoptosis on the mitochondria
Death receptor–mediated apoptosis requires the mitochondrial apoptosis pathway in many mammalian cells. In response to death receptor signaling, the truncated BH3-only protein BID can activate the proapoptotic BCL-2 proteins BAX and BAK and trigger the permeabilization of the mitochondria. BAX and BAK are inhibited by prosurvival BCL-2 proteins through retrotranslocation from the mitochondria into the cytosol, but a specific resistance mechanism to truncated BID-dependent apoptosis is unknown. Here, we report that hexokinase 1 and hexokinase 2 inhibit the apoptosis activator truncated BID as well as the effectors BAX and BAK by retrotranslocation from the mitochondria into the cytosol. BCL-2 protein shuttling and protection from TRAIL- and FasL-induced cell death requires mitochondrial hexokinase localization and interactions with the BH3 motifs of BCL-2 proteins but not glucose phosphorylation. Together, our work establishes hexokinase-dependent retrotranslocation of truncated BID as a selective protective mechanism against death receptor–induced apoptosis on the mitochondria.
Actinomycin X2, an Antimicrobial Depsipeptide from Marine-Derived Streptomyces cyaneofuscatus Applied as a Good Natural Dye for Silk Fabric
Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.
Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus
Background The increased rate of resistance among two highly concerned pathogens i.e. methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) necessitates the discovery of novel anti-MRSA and anti-VRE compounds. In microbial drug discovery, Streptomyces are well known source of two-thirds of natural antibiotics used clinically. Hence, screening of new strains of streptomycetes is the key step to get novel bioactive compounds with antimicrobial activity against drug resistant bacteria. Results In the present study, Streptomyces antibioticus strain M7, possessing potent antibacterial activity against different pathogenic bacteria, was isolated from rhizospheric soil of Stevia rebudiana . 16S rRNA sequence of M7 (1418 bp) showed 96.47–100% similarity with different Streptomyces spp. and the maximum similarity (100%) was observed with Streptomyces antibioticus NBRC 12838 T (AB184184). Phylogenetic analysis using neighbor joining method further validated its similarity with Streptomyces antibioticus NBRC 12838 T (AB184184) as it formed clade with the latter and showed high boot strap value (99%). Antibacterial metabolites isolated from the fermentation broth were characterized using NMR, FT-IR and LC-MS as actinomycins V, X 2 and D. The purified actinomycins exhibited potent antibacterial activities against test bacteria viz. B. subtilis, K. pneumoniae sub sp. pneumoniae , S. aureus, S. epidermidis , S. typhi, E. coli , MRSA and VRE. Among these actinomycins, actinomycin X 2 was more effective as compared to actinomycins D and V. The minimum inhibitory concentration values of purified compounds against a set of test bacterial organisms viz. VRE, MRSA, E. coli (S1-LF), K. pneumoniae sub sp. pneumoniae and B. subtilis ranged between 1.95 and 31.25 μg/ml. Conclusions This study demonstrates that actinomycins V, X 2 and D produced by S. antibioticus strain M7 hold the potential to be used against multidrug resistant bacteria, particularly VRE and MRSA.
Multi-Omics Analysis Reveals Anti-Staphylococcus aureus Activity of Actinomycin D Originating from Streptomyces parvulus
Staphylococcus aureus (S. aureus) is a common pathogen that causes various serious diseases, including chronic infections. Discovering new antibacterial agents is an important aspect of the pharmaceutical field because of the lack of effective antibacterial drugs. In our research, we found that one anti-S. aureus substance is actinomycin D, originating from Streptomyces parvulus (S. parvulus); then, we further focused on the anti-S. aureus ability and the omics profile of S. aureus in response to actinomycin D. The results revealed that actinomycin D had a significant inhibitory activity on S. aureus with a minimum inhibitory concentration (MIC) of 2 μg/mL and a minimum bactericidal concentration (MBC) of 64 μg/mL. Bacterial reactive oxygen species (ROS) increased 3.5-fold upon treatment with actinomycin D, as was measured with the oxidation-sensitive fluorescent probe DCFH-DA, and H2O2 increased 3.5 times with treatment by actinomycin D. Proteomics and metabolomics, respectively, identified differentially expressed proteins in control and treatment groups, and the co-mapped correlation network of proteomics and metabolomics annotated five major pathways that were potentially related to disrupting the energy metabolism and oxidative stress of S. aureus. All findings contributed to providing new insight into the mechanisms of the anti-S. aureus effects of actinomycin D originating from S. parvulus.
Transcriptome Analyses Show Changes in Gene Expression to Accompany Pollen Germination and Tube Growth in Arabidopsis
Pollen germination, along with pollen tube growth, is an essential process for the reproduction of flowering plants. The germinating pollen with tip-growth characteristics provides an ideal model system for the study of cell growth and morphogenesis. As an essential step toward a detailed understanding of this important process, the objective of this study was to comprehensively analyze the transcriptome changes during pollen germination and pollen tube growth. Using Affymetrix Arabidopsis (Arabidopsis thaliana) ATH1 Genome Arrays, this study is, to our knowledge, the first to show the changes in the transcriptome from desiccated mature pollen grains to hydrated pollen grains and then to pollen tubes of Arabidopsis. The number of expressed genes, either for total expressed genes or for specifically expressed genes, increased significantly from desiccated mature pollen to hydrated pollen and again to growing pollen tubes, which is consistent with the finding that pollen germination and tube growth were significantly inhibited in vitro by a transcriptional inhibitor. The results of Gene Ontology analyses showed that expression of genes related to cell rescue, transcription, signal transduction, and cellular transport was significantly changed, especially for up-regulation, during pollen germination and tube growth. In particular, genes of the calmodulin/calmodulin-like protein, cation/hydrogen exchanger, and heat shock protein families showed the most significant changes during pollen germination and tube growth. These results demonstrate that the overall transcription of genes, both in the number of expressed genes and in the levels of transcription, was increased. Furthermore, the appearance of many novel transcripts during pollen germination as well as tube growth indicates that these newly expressed genes may function in this complex process.
Neo-actinomycins A and B, natural actinomycins bearing the 5H-oxazolo4,5-bphenoxazine chromophore, from the marine-derived Streptomyces sp. IMB094
Neo-actinomycins A and B (1 and 2), two new natural actinomycins featuring an unprecedented tetracyclic 5 H -oxazolo[4,5- b ]phenoxazine chromophore, were isolated from the marine-derived actinomycete Streptomyces sp. IMB094. Their structures were elucidated by spectroscopic analyses. The presence of this ring system was proposed to originate from a condensation between actinomycin D (3) with α-ketoglutarate and pyruvate, respectively. Compound 1 showed potent cytotoxic activities against human cancer HCT116 and A549 cell lines in the nanomolar range (IC 50 : 38.7 and 65.8 nM, respectively) and moderate antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) strains.
Regulation of TFEB and V-ATPases by mTORC1
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is an important, highly conserved, regulator of cell growth. Ancient among the signals that regulate mTORC1 are nutrients. Amino acids direct mTORC1 to the surface of the late endosome/lysosome, where mTORC1 becomes receptive to other inputs. However, the interplay between endosomes and mTORC1 is poorly understood. Here, we report the discovery of a network that links mTORC1 to a critical component of the late endosome/lysosome, the V‐ATPase. In an unbiased screen, we found that mTORC1 regulated the expression of, among other lysosomal genes, the V‐ATPases. mTORC1 regulates V‐ATPase expression both in cells and in mice. V‐ATPase regulation by mTORC1 involves a transcription factor translocated in renal cancer, TFEB. TFEB is required for the expression of a large subset of mTORC1 responsive genes. mTORC1 coordinately regulates TFEB phosphorylation and nuclear localization and in a manner dependent on both TFEB and V‐ATPases, mTORC1 promotes endocytosis. These data uncover a regulatory network linking an oncogenic transcription factor that is a master regulator of lysosomal biogenesis, TFEB, to mTORC1 and endocytosis. TORC1 is a key regulator of cell growth in response to nutrients and acts at the surface of the late endosome. This study identifies V‐ATPase genes as transcriptional targets of TORC1 and implicates the transcription factor TFEB as an important mediator of TORC1‐dependent gene expression and TORC1‐regulated endocytosis.
Actinomycin V Induces Apoptosis Associated with Mitochondrial and PI3K/AKT Pathways in Human CRC Cells
Actinomycin (Act) V, an analogue of Act D, presented stronger antitumor activity and less hepatorenal toxicity than Act D in our previous studies, which is worthy of further investigation. We hereby report that Act V induces apoptosis via mitochondrial and PI3K/AKT pathways in colorectal cancer (CRC) cells. Act V-induced apoptosis was characterized by mitochondrial dysfunction, with loss of mitochondria membrane potential (MMP) and cytochrome c release, which then activated cleaved caspase-9, cleaved caspase-3, and cleaved PARP, revealing that it was related to the mitochondrial pathway, and the apoptotic trendency can be reversed by caspase inhibitor Z-VAD-FMK. Furthermore, we proved that Act V significantly inhibited PI3K/AKT signalling in HCT-116 cells using cell experiments in vitro, and it also presented a potential targeted PI3Kα inhibition using computer docking models. Further elucidation revealed that it exhibited a 28-fold greater potency than the PI3K inhibitor LY294002 on PI3K inhibition efficacy. Taken together, Act V, as a superior potential replacement of Act D, is a potential candidate for inhibiting the PI3K/AKT pathway and is worthy of more pre-clinical studies in the therapy of CRC.