Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Dansylation"
Sort by:
Deep learning prediction of electrospray ionization tandem mass spectra of chemically derived molecules
Chemical derivatization is a powerful strategy to enhance sensitivity and selectivity of liquid chromatography-mass spectrometry for non-targeted analysis of chemicals in complex mixtures. However, it remains impossible to obtain large sets of reference spectra for chemically derived molecules (CDMs), representing a major barrier in real-world applications. Herein, we describe a deep learning approach that enables accurate prediction of electrospray ionization tandem mass spectra for CDMs (DeepCDM). DeepCDM is established by transfer learning from a generic spectrum predicting model using a small set of experimentally acquired tandem mass spectra of CDMs, which converts a generic model with low predictability for CDMs into a specialized model with high predictability. We demonstrate DeepCDM by predicting electrospray ionization tandem mass spectra of dansylated molecules. The success in establishing Dns-MS further enables the development of DnsBank, a dansylation-specialized in silico spectral library. DnsBank achieves significant increases of accurate annotation rates of dansylated molecules, facilitating discovery of new hazardous pollutants from an environmental study of leather industrial wastewater. DeepCDM is also highly versatile for other classes of CDMs. Therefore, we envision that DeepCDM will pave a way for high-throughput identification of CDMs in non-targeted analysis to dig unknowns with potential health impacts from emerging anthropogenic chemicals. Chemical derivatization is widely used, but the lack of reference spectra of chemically derived molecules (CDMs) hinders their identification. Here, the authors describe a deep learning approach enabling accurate prediction of ESIMS/MS spectra for CDMs.
Thermal tolerance role of novel polyamine, caldopentamine, identified in fifth instar Bombyx mori
Silkworms have limited ability to regulate their body temperature; therefore, environmental changes, such as global warming, can adversely affect their viability. Polyamines have shown protection to various organisms against heat stress. This study evaluated the qualitative and quantitative changes in heat-stressed Bombyx mori larvae polyamines. Fifth instar Bombyx mori larvae were divided into two groups; control group, reared at room temperature, i.e., 28 ± 2 °C, and the heat shock group, exposed to 40 °C. Dansylation of the whole worm polyamines and subsequent thin-layer chromatography revealed the presence of components with the same Rf value as dansyl–putrescine, spermidine, and spermine. The dansyl–putrescine, spermidine, and spermine polyamines were identified by mass spectrometric analyses. After heat shock, the thin-layer chromatography of the whole-larvae tissue extracts showed qualitative and quantitative changes in dansylated polyamines. A new polyamine, caldopentamine, was identified, which showed elevated levels in heat-stressed larvae. This polyamine could play a role in helping the larvae tolerate various stress, including thermal stress. No significant changes in silk fiber’s economic and mechanical properties were observed in our study. This study indicated that PA, caldopentamine, supplementation could improve heat-stress tolerance in Bombyx mori.
Determination of 19 Steroid Hormones in Human Serum and Urine Using Liquid Chromatography-Tandem Mass Spectrometry
This paper describes a methodology for simultaneous determination of 19 steroid hormones, viz. estrone, estradiol, estriol, testosterone, 5α-dihydrotestosterone, androstenedione, androstenediol, dehydroepiandrosterone, progesterone, pregnenolone, 17α-OH-progesterone, 17α-OH-pregnenolone, cortisone, cortisol, 11-deoxycortisol, 11-deoxycorticosterone, 11-dehydrocorticosterone, aldosterone, and corticosterone, in 500-µL of urine or serum/plasma. The method was optimized using isotopically labeled internal standards and liquid-liquid extraction followed by detection using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS/MS). Dansylation of estrogens significantly improved their sensitivities (~11- to 23-fold) and chromatographic separation. The respective limit of detection (LOD) and limit of quantification (LOQ) of all analytes were 0.04–0.28 and 0.14–0.92 ng/mL in human urine, and 0.11–0.35 and 0.38–1.18 ng/mL in human serum/plasma. Recoveries of all analytes (except for progesterone) fortified at 10, 20, and 200 ng/mL in urine and serum were 80–120%, with standard deviations ranging from 0 to 17.3%. Repeated analysis of similarly fortified urine and serum samples yielded intra-day and inter-day variations of 0–21.7% and 0.16–11.5%, respectively. All analytes except cortisone exhibited weak matrix effects in urine and serum (−13.9–18.2%). The method was further validated through the analysis of the National Institute of Standards and Technology (NIST) plasma Standard Reference Material (SRM1950) with certified concentrations for cortisol, progesterone, and testosterone (coefficient of variation: 3–11%). The developed method was applied in the analysis of urine samples from 20 volunteers, which revealed the occurrence of 16 analytes with detection frequencies (DFs) > 80%. Furthermore, 15 analytes were found in plasma SRM1950, indicating the feasibility of our method in the analysis of steroid hormones in urine and serum/plasma. This method will facilitate analysis of steroid hormones in population-based biomonitoring studies.
Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model
We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models.
Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling and Metabolic Classification of Prostate Cancer
We report a method of metabolomic profiling of intact tissue based on molecular preservation by extraction and fixation (mPREF) and high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). mPREF extracts metabolites by aqueous methanol from tissue biopsies without altering tissue architecture and thus conventional histology can be performed on the same tissue. In a proof-of-principle study, we applied dansylation LC-MS to profile the amine/phenol submetabolome of prostate needle biopsies from 25 patient samples derived from 16 subjects. 2900 metabolites were consistently detected in more than 50% of the samples. This unprecedented coverage allowed us to identify significant metabolites for differentiating tumor and normal tissues. The panel of significant metabolites was refined using 36 additional samples from 18 subjects. Receiver Operating Characteristic (ROC) analysis showed area-under-the-curve (AUC) of 0.896 with sensitivity of 84.6% and specificity of 83.3% using 7 metabolites. A blind study of 24 additional validation samples gave a specificity of 90.9% at the same sensitivity of 84.6%. The mPREF extraction can be readily implemented into the existing clinical workflow. Our method of combining mPREF with CIL LC-MS offers a powerful and convenient means of performing histopathology and discovering or detecting metabolite biomarkers in the same tissue biopsy.
Characterizing the effects of hypoxia on the metabolic profiles of mesenchymal stromal cells derived from three tissue sources using chemical isotope labeling liquid chromatography-mass spectrometry
Microenvironmental factors such as oxygen concentration mediate key effects on the biology of mesenchymal stromal cells (MSCs). Herein, we performed an in-depth characterization of the metabolic behavior of MSCs derived from the placenta, umbilical cord, and adipose tissue (termed hPMSCs, UC-MSCs, and AD-MSCs, respectively) at physiological (hypoxic; 5% oxygen [O 2 ]) and standardized (normoxic; 21% O 2 ) O 2 concentrations using chemical isotope labeling liquid chromatography-mass spectrometry. 12 C- and 13 C-isotope dansylation (Dns) labeling was used to analyze the amine/phenol submetabolome, and 2574 peak pairs or metabolites were detected and quantified, from which 52 metabolites were positively identified using a library of 275 Dns-metabolite standards; 2189 metabolites were putatively identified. Next, we identified six metabolites using the Dns library, as well as 14 hypoxic biomarkers from the human metabolome database out of 96 altered metabolites. Ultimately, metabolic pathway analyses were performed to evaluate the associated pathways. Based on pathways identified using the Kyoto Encyclopedia of Genes and Genomes, we identified significant changes in the metabolic profiles of MSCs in response to different O 2 concentrations. These results collectively suggest that O 2 concentration has the strongest influence on hPMSCs metabolic characteristics, and that 5% O 2 promotes arginine and proline metabolism in hPMSCs and UC-MSCs but decreases gluconeogenesis (alanine-glucose) rates in hPMSCs and AD-MSCs. These changes indicate that MSCs derived from different sources exhibit distinct metabolic profiles.
Variations in Proline Content, Polyamine Profiles, and Antioxidant Capacities among Different Provenances of European Beech (Fagus sylvatica L.)
International provenance trials are a hot topic in forestry, and in light of climate change, the search for more resilient beech provenances and their assisted migration is one of the challenges of climate-smart forestry. The main aim of the study was to determine intraspecific variability in European beech (Fagus sylvatica L.) among 11 beech provenances according to total antioxidant capacities estimated by various assays, such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid), FRAP (ferric reducing antioxidant power) assay, and radical scavenging capacity against nitric oxide (RSC-NO assays), as well as osmolyte content, primarily individual polyamines (putrescine, spermidine, and spermine), and free proline content. Polyamine amounts were quantified by using HPLC coupled with fluorescent detection after dansylation pretreatment. The highest values for radical scavenger capacity assays (ABTS, DPPH, and FRAP) were measured in the German provenances DE47 and DE49. Also, the highest NO inhibition capacity was found in the provenance DE49, while the highest content of proline (PRO), total phenolic content (TPC), and total flavonoid content (TFC) was recorded in DE47. The Austrian AT56 and German provenance DE49 were most abundant in total polyamines. This research underlines the importance of the application of common antioxidant assays as well as osmolyte quantification as a criterion for the selection of climate-ready beech provenances for sustainable forest management.
Analytical determination of oestrogenic endocrine disruptors: the method of choice for wastewater treatment plant effluents
Two analytical approaches – liquid chromatography–tandem mass spectrometry (LC-MS/MS) and gas chromatography–tandem mass spectrometry (GC-MS/MS) methods – were compared for the simultaneous determination of the 19 most important oestrogenic endocrine disrupting chemicals (EDCs), such as 17β-oestradiol, oestrone, 17α-ethinyloestradiol, bisphenol A and triclosan in wastewater treatment plant effluents. To lower the instrument limits of detection (ILODs), a derivatisation step preceded detection in both methods. The stability, sensitivity and ease of use of dansylation (Dns) for LC-MS/MS and trimethylsilylation (TMS) for GC-MS/MS derivatives were evaluated before method validation. TMS derivatisation products were highly unstable over time. Parameters such as susceptibility to matrix effects and the stability of monodansylated and didansylated derivatisation products of phytohormones are discussed. Lower ILODs of highly potent EDCs (0.11 ng mL−1 for 17β-oestradiol, 0.01 ng mL−1 for 17α-ethinyloestradiol and 0.22 ng mL−1 for oestrone) and stability of derivatisation products within 7 days were achieved using LC–MS/MS; therefore, further validation of this method at environmentally relevant concentrations was conducted. The method limits of detection (MLODs) met the requirements of the European Union defined in Directive 2008/105/ES for 17α-ethinyloestradiol (0.035 ng L−1) and 17β-oestradiol (0.4 ng L−1). Twenty samples of wastewater treatment plant effluent from the Czech Republic were screened using LC-MS/MS. Fifteen of the EDCs were detected in at least one sample. The most abundant EDCs were bisphenol A, with a concentration up to 1107 ng L−1, and triclosan, with a concentration up to 76 ng L−1. No seasonal trend between late spring and autumn samples was observed in the frequency or quantity of analytes.
Separation of dansylated 17β-estradiol, 17α-estradiol, and estrone on a single HPLC column for simultaneous quantitation by LC–MS/MS
We show here that baseline separation of dansylated estrone, 17β-estradiol, and 17α-estradiol can be done, contrary to previous reports, within a short run time on a single RP-LC analytical column packed with particles bonded with phenyl-hexyl stationary phase. The chromatographic method coupled with isotope dilution tandem MS offers a simple assay enabling the simultaneous analysis of these analytes. The method employs 13 C-labeled estrogens as internal standards to eliminate potential matrix effects arising from the use of deuterated estrogens. The assay also offers adequate accuracy and sensitivity to be useful for biological samples. The practical applicability of the validated method is demonstrated by the quantitative analyses of in vivo samples obtained from rats treated with Premarin®. Figure Quantification of estrogens from rat samples by LC–MS/MS
Metabolomics Distinguishes DOCK8 Deficiency from Atopic Dermatitis: Towards a Biomarker Discovery
Bi-allelic mutations in the dedicator of cytokinesis 8 (DOCK8) are responsible for a rare autosomal recessive primary combined immunodeficiency syndrome, characterized by atopic dermatitis, elevated serum Immunoglobulin E (IgE) levels, recurrent severe cutaneous viral infections, autoimmunity, and predisposition to malignancy. The molecular link between DOCK8 deficiency and atopic skin inflammation remains unknown. Severe atopic dermatitis (AD) and DOCK8 deficiency share some clinical symptoms, including eczema, eosinophilia, and increased serum IgE levels. Increased serum IgE levels are characteristic of, but not specific to allergic diseases. Herein, we aimed to study the metabolomic profiles of DOCK8-deficient and AD patients for potential disease-specific biomarkers using chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS). Serum samples were collected from DOCK8-deficient (n = 10) and AD (n = 9) patients. Metabolomics profiling using CIL LC-MS was performed on patient samples and compared to unrelated healthy controls (n = 33). Seven metabolites were positively identified, distinguishing DOCK8-deficient from AD patients. Aspartic acid and 3-hydroxyanthranillic acid (3HAA, a tryptophan degradation pathway intermediate) were up-regulated in DOCK8 deficiency, whereas hypotaurine, leucyl-phenylalanine, glycyl-phenylalanine, and guanosine were down-regulated. Hypotaurine, 3-hydroxyanthranillic acid, and glycyl-phenylalanine were identified as potential biomarkers specific to DOCK8 deficiency. Aspartate availability has been recently implicated as a limiting metabolite for tumour growth and 3HAA; furthermore, other tryptophan metabolism pathway-related molecules have been considered as potential novel targets for cancer therapy. Taken together, perturbations in tryptophan degradation and increased availability of aspartate suggest a link of DOCK8 deficiency to oncogenesis. Additionally, perturbations in taurine and dipeptides metabolism suggest altered antixidation and cell signaling states in DOCK8 deficiency. Further studies examining the mechanisms underlying these observations are necessary.