Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
43,498 result(s) for "Data correlation"
Sort by:
Double graph correlation encryption based on hyperchaos
Preventing unauthorized access to sensitive data has always been one of the main concerns in the field of information security. Accordingly, various solutions have been proposed to meet this requirement, among which encryption can be considered as one of the first and most effective solutions. The continuous increase in the computational power of computers and the rapid development of artificial intelligence techniques have made many previous encryption solutions not secure enough to protect data. Therefore, there is always a need to provide new and more efficient strategies for encrypting information. In this article, a two-way approach for information encryption based on chaos theory is presented. To this end, a new chaos model is first proposed. This model, in addition to having a larger key space and high sensitivity to slight key changes, can demonstrate a higher level of chaotic behavior compared to previous models. In the proposed method, first, the input is converted to a vector of bytes and first diffusion is applied on it. Then, the permutation order of chaotic sequence is used for diffusing bytes of data. In the next step, the chaotic sequence is used for applying second diffusion on confused data. Finally, to further reduce the data correlation, an iterative reversible rule-based model is used to apply final diffusion on data. The performance of the proposed method in encrypting image, text, and audio data was evaluated. The analysis of the test results showed that the proposed encryption strategy can demonstrate a pattern close to a random state by reducing data correlation at least 28.57% compared to previous works. Also, the data encrypted by proposed method, show at least 14.15% and 1.79% increment in terms of MSE and BER, respectively. In addition, key sensitivity of 10 −28 and average entropy of 7.9993 in the proposed model, indicate its high resistance to brute-force, statistical, plaintext and differential attacks.
A method for determination of harmonics responsibilities at the point of common coupling using data correlation analysis
In this study, a new method is proposed to evaluate the utility harmonic impedance and the harmonics responsibilities at the point of common coupling. The former task is accomplished by involving the harmonic phase angles in the data correlation method, and the latter one is done using an approach based on the fluctuation of the background harmonic voltage. An important advantage of the method is to take the load harmonic impedance into account in appropriate manner. The performance of the proposed method is verified using simulation studies for different cases and also field measurements. Long-term measurement data are used to determine the harmonic contribution of the industrial customers and short-term measurement data are utilised to validate the effectiveness of the proposed method. Totally, simulation analysis and case study demonstrate more accuracy of the proposed method in comparison with other present methods.
Geo-Tagged Photo Metadata Processing Method for Beijing Inbound Tourism Flow
Technological advances have led to numerous developments in data sources. Geo-tagged photo metadata has provided a new source of mass research data for tourism studies. A series of data processing methods centering on the various types of information contained in geo-tagged photo metadata have thus been proposed; as a result, the development of tourism studies based on such data has advanced. However, an in-depth study of the data processing methods designed to conduct tourist flow prediction based on geo-tagged photo metadata has not yet been conducted. In order to acquire accurate substitutive data regarding inbound flows in cities, this paper introduces and designs several methods, including data screening, text data similarity calculation, geographical location clustering, and time series data modelling, in order to realize a data preprocessing model for inbound tourist flows in cities based on geo-tagged photo metadata. Wherein, the entropy filtering method was introduced to aid in determining whether the data were posted by inbound tourists; whether the inbound persons’ activities were related to tourism was judged through the calculation of tag text similarity; an efficient clustering method based on geographic grid partition was designed for cases in which the tag values were empty; finally, the time series of the inbound tourist flows of a certain region and period were obtained through data statistics and normalization. For the empirical research, Beijing City in China was selected as the research case, after which the feasibility and accuracy of the methods proposed in this paper were verified through data correlation analysis between Flickr data and real statistical yearbook data, as well as analysis of the prediction results based on a machine learning algorithm. The data preprocessing method introduced and designed in this paper provides a reference for the study of geo-tagged photo metadata in the field of tourism flow prediction. These methods can effectively filter out inbound tourist flow data from geotag photo metadata, thus providing a novel, reliable, and low-cost research data source for urban inbound tourism flow forecasting.
Energy-efficient scheduling strategies for minimizing big data collection in cluster-based sensor networks
Today, wireless sensor networks (WSNs) have been widely used in monitoring various applications, such as environment, military and health-care, etc. The explosive growth of the data volume generated in these applications has led to one of the most challenging research issues of the big data era. To deal with such amounts of data, exploring data correlation and scheduling strategies have received great attention in WSNs. In this paper, we propose an efficient mechanism based on the Euclidean distance for searching the spatial-temporal correlation between sensor nodes in periodic applications. Based on this correlation, we propose two sleep/active strategies for scheduling sensors in the network. The first one searches the minimum number of active sensors based on the set covering problem while the second one takes advantages from the correlation degree and the residual energy of the sensors for scheduling them in the network. Our mechanism with the proposed strategies were successfully tested on real sensor data. Compared to other existing techniques, the simulation results show that our mechanism significantly extends the lifetime of the network while conserving the quality of the collected data and the coverage of the monitored area.
A Cross-Correlational Analysis between Electroencephalographic and End-Tidal Carbon Dioxide Signals: Methodological Issues in the Presence of Missing Data and Real Data Results
Electroencephalographic (EEG) irreducible artifacts are common and the removal of corrupted segments from the analysis may be required. The present study aims at exploring the effects of different EEG Missing Data Segment (MDS) distributions on cross-correlation analysis, involving EEG and physiological signals. The reliability of cross-correlation analysis both at single subject and at group level as a function of missing data statistics was evaluated using dedicated simulations. Moreover, a Bayesian-based approach for combining the single subject results at group level by considering each subject’s reliability was introduced. Starting from the above considerations, the cross-correlation function between EEG Global Field Power (GFP) in delta band and end-tidal CO2 (PETCO2) during rest and voluntary breath-hold was evaluated in six healthy subjects. The analysis of simulated data results at single subject level revealed a worsening of precision and accuracy in the cross-correlation analysis in the presence of MDS. At the group level, a large improvement in the results’ reliability with respect to single subject analysis was observed. The proposed Bayesian approach showed a slight improvement with respect to simple average results. Real data results were discussed in light of the simulated data tests and of the current physiological findings.
Dimensionality Reduction and Classification of Hyperspectral Remote Sensing Image Feature Extraction
Terrain classification is an important research direction in the field of remote sensing. Hyperspectral remote sensing image data contain a large amount of rich ground object information. However, such data have the characteristics of high spatial dimensions of features, strong data correlation, high data redundancy, and long operation time, which lead to difficulty in image data classification. A data dimensionality reduction algorithm can transform the data into low-dimensional data with strong features and then classify the dimensionally reduced data. However, most classification methods cannot effectively extract dimensionality-reduced data features. In this paper, different dimensionality reduction and machine learning supervised classification algorithms are explored to determine a suitable combination method of dimensionality reduction and classification for hyperspectral images. Soft and hard classification methods are adopted to achieve the classification of pixels according to diversity. The results show that the data after dimensionality reduction retain the data features with high overall feature correlation, and the data dimension is drastically reduced. The dimensionality reduction method of unified manifold approximation and projection and the classification method of support vector machine achieve the best terrain classification with 99.57% classification accuracy. High-precision fitting of neural networks for soft classification of hyperspectral images with a model fitting correlation coefficient (R2) of up to 0.979 solves the problem of mixed pixel decomposition.
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
Background To evaluate binary classifications and their confusion matrices, scientific researchers can employ several statistical rates, accordingly to the goal of the experiment they are investigating. Despite being a crucial issue in machine learning, no widespread consensus has been reached on a unified elective chosen measure yet. Accuracy and F 1 score computed on confusion matrices have been (and still are) among the most popular adopted metrics in binary classification tasks. However, these statistical measures can dangerously show overoptimistic inflated results, especially on imbalanced datasets. Results The Matthews correlation coefficient (MCC), instead, is a more reliable statistical rate which produces a high score only if the prediction obtained good results in all of the four confusion matrix categories (true positives, false negatives, true negatives, and false positives), proportionally both to the size of positive elements and the size of negative elements in the dataset. Conclusions In this article, we show how MCC produces a more informative and truthful score in evaluating binary classifications than accuracy and F 1 score, by first explaining the mathematical properties, and then the asset of MCC in six synthetic use cases and in a real genomics scenario. We believe that the Matthews correlation coefficient should be preferred to accuracy and F 1 score in evaluating binary classification tasks by all scientific communities.
Ratings and rankings: voodoo or science?
Composite indicators aggregate a set of variables by using weights which are understood to reflect the variables' importance in the index. We propose to measure the importance of a given variable within existing composite indicators via Karl Pearson's 'correlation ratio'; we call this measure the 'main effect'. Because socio-economic variables are heteroscedastic and correlated, relative nominal weights are hardly ever found to match relative main effects; we propose to summarize their discrepancy with a divergence measure. We discuss to what extent the mapping from nominal weights to main effects can be inverted. This analysis is applied to six composite indicators, including the human development index and two popular league tables of university performance. It is found that in many cases the declared importance of single indicators and their main effect are very different, and that the data correlation structure often prevents developers from obtaining the stated importance, even when modifying the nominal weights in the set of non-negative numbers with unit sum.
Cross-Camera Multi-Object Tracking based on Person Re-Identification and Spatial-Temporal Constraints
In order to reduce the influence of occlusion on the overall feature representation of tracks and improve the accuracy of track correlation between cameras, this paper proposes a cross camera multi-target tracking method based on person appearance and spatial-temporal constraints: a new cross-camera multi-object tracking framework is constructed. Then the person spatial-temporal probability model is established. Finally, the spatial-temporal probability model and the person appearance similarity are jointly measured and the person trajectory correlation under cross-camera is completed by using data correlation; Comparative experiments on the dataset proved that the method is effective.