Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,141
result(s) for
"Deep Eutectic Solvents - chemistry"
Sort by:
Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives
by
Glova, Artyom
,
Lyulin, Sergey
,
Larin, Sergey
in
Artificial intelligence
,
Biomass
,
Carbohydrates
2022
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Journal Article
A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents
by
Molnar, Maja
,
Pavić, Valentina
,
Jakovljević Kovač, Martina
in
Acids
,
Amino acids
,
Antioxidants - chemistry
2024
This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.
Journal Article
Latest Insights on Novel Deep Eutectic Solvents (DES) for Sustainable Extraction of Phenolic Compounds from Natural Sources
by
Boczkaj, Grzegorz
,
Ahmad, Mohd Zamidi
,
Serna-Vázquez, Julio
in
Amino acids
,
Biological Products - chemistry
,
Biological Products - isolation & purification
2021
Phenolic compounds have long been of great importance in the pharmaceutical, food, and cosmetic industries. Unfortunately, conventional extraction procedures have a high cost and are time consuming, and the solvents used can represent a safety risk for operators, consumers, and the environment. Deep eutectic solvents (DESs) are green alternatives for extraction processes, given their low or non-toxicity, biodegradability, and reusability. This review discusses the latest research (in the last two years) employing DESs for phenolic extraction, solvent components, extraction yields, extraction method characteristics, and reviewing the phenolic sources (natural products, by-products, wastes, etc.). This work also analyzes and discusses the most relevant DES-based studies for phenolic extraction from natural sources, their extraction strategies using DESs, their molecular mechanisms, and potential applications.
Journal Article
Physico-Chemical Characterization of Amino Acid-Based Deep Eutectic Solvents
by
Greaves, Tamar L.
,
Bryant, Saffron J.
,
Drummond, Calum J.
in
amino acid-based deep eutectic solvents
,
Amino acids
,
Amino Acids - chemistry
2025
Deep eutectic solvents are an exciting class of designer solvents that are increasingly gaining popularity. Deep eutectic solvents based on amino acids are particularly interesting for biomedical applications due to their potential low toxicity. However, very few have been reported to date, and only one of these has been comprehensively studied, made from a combination of proline and glycerol. Here, we report for the first time a systematic investigation into amino acid-based deep eutectic solvents, with a particular focus on the structural features of amino acids that promote eutectic formation and their influence on viscosity, refractive index, surface tension and thermal behavior. Of the 22 amino acids (and related compounds) examined, only 3 (lysine, arginine and, as previously reported, proline) formed stable homogenous liquids in combination with glycerol or ethylene glycol. For these mixtures, it was found that the second component (glycerol or ethylene glycol) had a much more significant influence on the physical properties than the identity of the amino acid. Most significantly, it was found that far fewer amino acids readily formed deep eutectic solvents than has been generally assumed. This is the first work to systematically characterize deep eutectic solvents based on amino acids and, as such, paves the way for future biomedical applications of these solvents.
Journal Article
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
2024
Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.
Journal Article
Natural Deep Eutectic Solvent (NADES) Extraction Improves Polyphenol Yield and Antioxidant Activity of Wild Thyme (Thymus serpyllum L.) Extracts
by
Duarte, Ana Rita C.
,
Pavlić, Branimir
,
Stupar, Alena
in
antioxidant activity
,
Antioxidants
,
Antioxidants - chemistry
2022
Wild thyme (Thymus serpyllum L.) herbal dust has been recognized as a potential underutilized resource for the recovery of antioxidants. The aim of this paper was to optimize natural deep eutectic solvent (NADES) extraction of polyphenols to obtain improved antioxidant activity of extracts determined by selected in vitro assays (DPPH, FRAP, and ABTS). Twenty different NADES systems were investigated in the first step of the screening of the extraction solvent and l-proline (Pro)–glycerine (Gly) based solvents provided the best results. Preliminary experiments organized by 25−1 fractional factorial design narrowed down the number of extraction factors from five (temperature, extraction time, NADES type, water content and L/S ratio) to three and determined their experimental domain for the final step. A face-centered central composite design with temperature (40–55–70 °C), extraction time (60–120–180 min) and L/S ratio (10–20–30 g NADES/g sample) was applied for influence analysis and process optimization. Multi-response optimization suggested a temperature of 65 °C, time of extraction of 180 min and L/S ratio of 28 g NADES/g DW as optimal extraction parameters. Experimental validation confirmed good agreement between experimental and predicted results in the extract obtained at optimal conditions and the interactions in the most suitable NADES (N16; Pro–Gly–H2O; 1:2:1) were confirmed by the 1H-NMR.
Journal Article
Deep Eutectic Solvents Application in Food Analysis
by
González-Sálamo, Javier
,
Ortega-Zamora, Cecilia
,
Hernández-Borges, Javier
in
Animals
,
deep eutectic solvents
,
Deep Eutectic Solvents - chemistry
2021
Current trends in Analytical Chemistry are focused on the development of more sustainable and environmentally friendly procedures. However, and despite technological advances at the instrumental level having played a very important role in the greenness of the new methods, there is still work to be done regarding the sample preparation stage. In this sense, the implementation of new materials and solvents has been a great step towards the development of “greener” analytical methodologies. In particular, the application of deep eutectic solvents (DESs) has aroused great interest in recent years in this regard, as a consequence of their excellent physicochemical properties, general low toxicity, and high biodegradability if they are compared with classical organic solvents. Furthermore, the inclusion of DESs based on natural products (natural DESs, NADESs) has led to a notable increase in the popularity of this new generation of solvents in extraction techniques. This review article focuses on providing an overview of the applications and limitations of DESs in solvent-based extraction techniques for food analysis, paying especial attention to their hydrophobic or hydrophilic nature, which is one of the main factors affecting the extraction procedure, becoming even more important when such complex matrices are studied.
Journal Article
A Comprehensive Review on Deep Eutectic Solvents: Their Current Status and Potential for Extracting Active Compounds from Adaptogenic Plants
by
Cielecka-Piontek, Judyta
,
Stanisz, Malgorzata
,
Stanisz, Beata J.
in
active compounds
,
Alkaloids - chemistry
,
Alkaloids - isolation & purification
2024
Deep eutectic solvents (DESs) have attracted attention from researchers as novel compounds for extracting active substances because of their negligible toxicity, polarity, and ability to be tailored depending on the experiment. In this review, we discuss deep eutectic solvents as a promising medium for the extraction of adaptogenic compounds. In comparison to traditional methods, extraction with the use of DESs is a great alternative to the excessive usage of harmful organic solvents. It can be conducted in mild conditions, and DESs can be designed with different precursors, enhancing their versatility. Adaptogenic herbs have a long medicinal history, especially in Eastern Asia. They exhibit unique properties through the active compounds in their structures, including saponins, flavonoids, polysaccharides, and alkaloids. Therefore, they demonstrate a wide range of pharmaceutical effects, such as anti-inflammatory, antibacterial, and anticancer abilities. Since ancient times, many different adaptogenic herbs have been discovered and are well known, including Panax ginseng, Scutellaria baicalensis, and Schisandra chinensis. Active compounds can be extracted using standard methods, such as hydrolyzation, maceration, and conventional reflux extraction. However, due to the limitations of classical processing technologies, there has been a need to develop new and eco-friendly methods. We focus on the types of solvents, extraction efficiency, properties, and applications of the obtained active compounds. This review highlights the potential of DESs as eco-friendly alternatives for extracting bioactive compounds.
Journal Article
Advanced Extraction Techniques Combined with Natural Deep Eutectic Solvents for Extracting Phenolic Compounds from Pomegranate (Punica granatum L.) Peels
by
Ibáñez, Elena
,
Cifuentes, Alejandro
,
Viganó, Juliane
in
Chemical properties
,
Chloride
,
Chromatography, High Pressure Liquid - methods
2024
Pomegranate (Punica granatum L.) peel is a potential source of bioactive phenolic compounds such as ellagic acid and α- and β-punicalagin. This work explores the efficiency of natural deep eutectic solvents combined with ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) for their extraction. Five NaDESs were evaluated by employing UAE (25 °C, for 50 min) to determine their total phenolic content (Folin–Ciocalteu assay) and ellagic acid and α- and β-punicalagin contents (high-performance liquid chromatography (HPLC-DAD)). The NaDES composed of choline chloride (ChCl) and glycerol (Gly) (1:2, molar ratio) was the most efficient in the UAE when compared with the rest of the NaDESs and water extracts. Therefore, ChCl:Gly was further evaluated using PLE at different temperatures (40, 80, 120 and 160 °C). The PLE-NaDES extract obtained at 80 °C for 20 min at 1500 psi exhibited the highest contents of ellagic acid and α- and β-punicalagin compared to the rest of the temperatures and PLE-water extracts obtained under the same extraction conditions. Combining UAE or PLE with a NaDES emerges as a sustainable alternative for extracting ellagic acid and α- and β-punicalagin from pomegranate peel.
Journal Article
Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective
by
Cvijetić, Ilija
,
Ristivojević, Petar
,
Stanković, Dalibor
in
Agriculture - methods
,
bioactive compounds
,
Biological Products - chemistry
2024
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Journal Article