Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
558
result(s) for
"Deep Neural Network (DNN)"
Sort by:
Prediction of Blood-Brain Barrier Penetration (BBBP) Based on Molecular Descriptors of the Free-Form and In-Blood-Form Datasets
by
Fukuda, Motohisa
,
Sakiyama, Hiroshi
,
Okuno, Takashi
in
Amines - chemistry
,
Amines - pharmacology
,
Biological Transport - drug effects
2021
The blood-brain barrier (BBB) controls the entry of chemicals from the blood to the brain. Since brain drugs need to penetrate the BBB, rapid and reliable prediction of BBB penetration (BBBP) is helpful for drug development. In this study, free-form and in-blood-form datasets were prepared by modifying the original BBBP dataset, and the effects of the data modification were investigated. For each dataset, molecular descriptors were generated and used for BBBP prediction by machine learning (ML). For ML, the dataset was split into training, validation, and test data by the scaffold split algorithm MoleculeNet used. This creates an unbalanced split and makes the prediction difficult; however, we decided to use that algorithm to evaluate the predictive performance for unknown compounds dissimilar to existing ones. The highest prediction score was obtained by the random forest model using 212 descriptors from the free-form dataset, and this score was higher than the existing best score using the same split algorithm without using any external database. Furthermore, using a deep neural network, a comparable result was obtained with only 11 descriptors from the free-form dataset, and the resulting descriptors suggested the importance of recognizing the glucose-like characteristics in BBBP prediction.
Journal Article
An Integration of Deep Neural Network-Based Extended Kalman Filter (DNN-EKF) Method in Ultra-Wideband (UWB) Localization for Distance Loss Optimization
2024
This paper examines the critical role of indoor positioning for robots, with a particular focus on small and confined spaces such as homes, warehouses, and similar environments. We develop an algorithm by integrating deep neural networks (DNNs) with the extended Kalman filter (EKF) method, which is known as DNN-EKF, to obtain an accurate indoor localization for ensuring precise and reliable robot movements within the use of Ultra-Wideband (UWB) technology. The study introduces a novel methodology that combines advanced technology, including DNN, filtering techniques, specifically the EKF and UWB technology, with the objective of enhancing the accuracy of indoor localization systems. The objective of integrating these technologies is to develop a more robust and dependable solution for robot navigation in challenging indoor environments. The proposed approach combines a DNN with the EKF to significantly improve indoor localization accuracy for mobile robots. The results clearly show that the proposed model outperforms existing methods, including NN-EKF, LPF-EKF, and other traditional approaches. In particular, the DNN-EKF method achieves optimal performance with the least distance loss compared to NN-EKF and LPF-EKF. These results highlight the superior effectiveness of the DNN-EKF method in providing precise localization in indoor environments, especially when utilizing UWB technology. This makes the model highly suitable for real-time robotic applications, particularly in dynamic and noisy environments.
Journal Article
Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices
2019
In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron network, we evaluate the learning performance according to various conductance responses of electronic synapse devices and weight-updating methods. It is shown that the learning accuracy is comparable to that obtained when using a software-based BP algorithm when the electronic synapse device has a linear conductance response with a high dynamic range. Furthermore, the proposed unidirectional weight-updating method is suitable for electronic synapse devices which have nonlinear and finite conductance responses. Because this weight-updating method can compensate the demerit of asymmetric weight updates, we can obtain better accuracy compared to other methods. This adaptive learning rule, which can be applied to full hardware implementation, can also compensate the degradation of learning accuracy due to the probable device-to-device variation in an actual electronic synapse device.
Journal Article
Skin Cancer Detection: A Review Using Deep Learning Techniques
by
Ramzan, Muhammad
,
Alraddadi, Mohammed Olaythah
,
Irfan, Muhammad
in
Algorithms
,
Cancer research
,
Deep Learning
2021
Skin cancer is one of the most dangerous forms of cancer. Skin cancer is caused by un-repaired deoxyribonucleic acid (DNA) in skin cells, which generate genetic defects or mutations on the skin. Skin cancer tends to gradually spread over other body parts, so it is more curable in initial stages, which is why it is best detected at early stages. The increasing rate of skin cancer cases, high mortality rate, and expensive medical treatment require that its symptoms be diagnosed early. Considering the seriousness of these issues, researchers have developed various early detection techniques for skin cancer. Lesion parameters such as symmetry, color, size, shape, etc. are used to detect skin cancer and to distinguish benign skin cancer from melanoma. This paper presents a detailed systematic review of deep learning techniques for the early detection of skin cancer. Research papers published in well-reputed journals, relevant to the topic of skin cancer diagnosis, were analyzed. Research findings are presented in tools, graphs, tables, techniques, and frameworks for better understanding.
Journal Article
I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
2021
Network-based Intrusion Detection Systems (NIDSs) identify malicious activities by analyzing network traffic. NIDSs are trained with the samples of benign and intrusive network traffic. Training samples belong to either majority or minority classes depending upon the number of available instances. Majority classes consist of abundant samples for the normal traffic as well as for recurrent intrusions. Whereas, minority classes include fewer samples for unknown events or infrequent intrusions. NIDSs trained on such imbalanced data tend to give biased predictions against minority attack classes, causing undetected or misclassified intrusions. Past research works handled this class imbalance problem using data-level approaches that either increase minority class samples or decrease majority class samples in the training data set. Although these data-level balancing approaches indirectly improve the performance of NIDSs, they do not address the underlying issue in NIDSs i.e. they are unable to identify attacks having limited training data only. This paper proposes an algorithm-level approach called Improved Siam-IDS (I-SiamIDS), which is a two-layer ensemble for handling class imbalance problem. I-SiamIDS identifies both majority and minority classes at the algorithm-level without using any data-level balancing techniques. The first layer of I-SiamIDS uses an ensemble of binary eXtreme Gradient Boosting (b-XGBoost), Siamese Neural Network (Siamese-NN) and Deep Neural Network (DNN) for hierarchical filtration of input samples to identify attacks. These attacks are then sent to the second layer of I-SiamIDS for classification into different attack classes using multi-class eXtreme Gradient Boosting classifier (m-XGBoost). As compared to its counterparts, I-SiamIDS showed significant improvement in terms of Accuracy, Recall, Precision, F1-score and values of Area Under the Curve (AUC) for both NSL-KDD and CIDDS-001 datasets. To further strengthen the results, computational cost analysis was also performed to study the acceptability of the proposed I-SiamIDS.
Journal Article
An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
by
Che, Wenliang
,
Chen, Jinling
,
Huang, Xin
in
Classification
,
CNN (convolutional neural network)
,
CNN-LSTM
2020
Emotion is the human brain reacting to objective things. In real life, human emotions are complex and changeable, so research into emotion recognition is of great significance in real life applications. Recently, many deep learning and machine learning methods have been widely applied in emotion recognition based on EEG signals. However, the traditional machine learning method has a major disadvantage in that the feature extraction process is usually cumbersome, which relies heavily on human experts. Then, end-to-end deep learning methods emerged as an effective method to address this disadvantage with the help of raw signal features and time-frequency spectrums. Here, we investigated the application of several deep learning models to the research field of EEG-based emotion recognition, including deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid model of CNN and LSTM (CNN-LSTM). The experiments were carried on the well-known DEAP dataset. Experimental results show that the CNN and CNN-LSTM models had high classification performance in EEG-based emotion recognition, and their accurate extraction rate of RAW data reached 90.12 and 94.17%, respectively. The performance of the DNN model was not as accurate as other models, but the training speed was fast. The LSTM model was not as stable as the CNN and CNN-LSTM models. Moreover, with the same number of parameters, the training speed of the LSTM was much slower and it was difficult to achieve convergence. Additional parameter comparison experiments with other models, including epoch, learning rate, and dropout probability, were also conducted in the paper. Comparison results prove that the DNN model converged to optimal with fewer epochs and a higher learning rate. In contrast, the CNN model needed more epochs to learn. As for dropout probability, reducing the parameters by ~50% each time was appropriate.
Journal Article
An efficient XGBoost–DNN-based classification model for network intrusion detection system
by
Khare, Neelu
,
Devan, Preethi
in
Algorithms
,
Artificial Intelligence
,
Artificial neural networks
2020
There is a steep rise in the trend of the utility of Internet technology day by day. This tremendous increase ushers in a massive amount of data generated and handled. For apparent reasons, undivided attention is due for ensuring network security. An intrusion detection system plays a vital role in the field of the stated security. The proposed XGBoost–DNN model utilizes XGBoost technique for feature selection followed by deep neural network (DNN) for classification of network intrusion. The XGBoost–DNN model has three steps: normalization, feature selection, and classification. Adam optimizer is used for learning rate optimization during DNN training, and softmax classifier is applied for classification of network intrusions. The experiments were duly conducted on the benchmark NSL-KDD dataset and implemented using Tensor flow and python. The proposed model is validated using cross-validation and compared with existing shallow machine learning algorithms like logistic regression, SVM, and naive Bayes. The classification evaluation metrics such as accuracy, precision, recall, and F1-score are calculated and compared with the existing shallow methods. The proposed method outperformed over the existing shallow methods used for the dataset.
Journal Article
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
by
Wolverton, Chris
,
Liao, Wei-keng
,
Choudhary, Alok
in
639/301/1034/1037
,
639/638/298
,
Artificial intelligence
2018
Conventional machine learning approaches for predicting material properties from elemental compositions have emphasized the importance of leveraging domain knowledge when designing model inputs. Here, we demonstrate that by using a deep learning approach, we can bypass such manual feature engineering requiring domain knowledge and achieve much better results, even with only a few thousand training samples. We present the design and implementation of a deep neural network model referred to as
ElemNet
; it automatically captures the physical and chemical interactions and similarities between different elements using artificial intelligence which allows it to predict the materials properties with better accuracy and speed. The speed and best-in-class accuracy of
ElemNet
enable us to perform a fast and robust screening for new material candidates in a huge combinatorial space; where we predict hundreds of thousands of chemical systems that could contain yet-undiscovered compounds.
Journal Article
A Survey on Collaborative DNN Inference for Edge Intelligence
by
Dong, Chao
,
Jing, Yu-Qian
,
Wu, Qi-Hui
in
Artificial intelligence
,
Artificial neural networks
,
Cloud computing
2023
With the vigorous development of artificial intelligence (AI), intelligence applications based on deep neural networks (DNNs) have changed people’s lifestyles and production efficiency. However, the large amount of computation and data generated from the network edge becomes the major bottleneck, and the traditional cloud-based computing mode has been unable to meet the requirements of realtime processing tasks. To solve the above problems, by embedding AI model training and inference capabilities into the network edge, edge intelligence (EI) becomes a cutting-edge direction in the field of AI. Furthermore, collaborative DNN inference among the cloud, edge, and end devices provides a promising way to boost EI. Nevertheless, at present, EI oriented collaborative DNN inference is still in its early stage, lacking systematic classification and discussion of existing research efforts. Motivated by it, we have comprehensively investigated recent studies on EI-oriented collaborative DNN inference. In this paper, we first review the background and motivation of EI. Then, we classify four typical collaborative DNN inference paradigms for EI, and analyse their characteristics and key technologies. Finally, we summarize the current challenges of collaborative DNN inference, discuss future development trends and provide future research directions.
Journal Article
Brain Magnetic Resonance Imaging Classification Using Deep Learning Architectures with Gender and Age
2022
Usage of effective classification techniques on Magnetic Resonance Imaging (MRI) helps in the proper diagnosis of brain tumors. Previous studies have focused on the classification of normal (nontumorous) or abnormal (tumorous) brain MRIs using methods such as Support Vector Machine (SVM) and AlexNet. In this paper, deep learning architectures are used to classify brain MRI images into normal or abnormal. Gender and age are added as higher attributes for more accurate and meaningful classification. A deep learning Convolutional Neural Network (CNN)-based technique and a Deep Neural Network (DNN) are also proposed for effective classification. Other deep learning architectures such as LeNet, AlexNet, ResNet, and traditional approaches such as SVM are also implemented to analyze and compare the results. Age and gender biases are found to be more useful and play a key role in classification, and they can be considered essential factors in brain tumor analysis. It is also worth noting that, in most circumstances, the proposed technique outperforms both existing SVM and AlexNet. The overall accuracy obtained is 88% (LeNet Inspired Model) and 80% (CNN-DNN) compared to SVM (82%) and AlexNet (64%), with best accuracy of 100%, 92%, 92%, and 81%, respectively.
Journal Article