Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,552 result(s) for "Deep residual network"
Sort by:
A smart Alzheimer’s patient monitoring system with IoT-assisted technology through enhanced deep learning approach
Earlier detection of Alzheimer’s disease is more significant for improving the quality of the patient’s life. This aspect may reduce the fatality rate among the population and also maximize the average life expectancy. Thus, this paper introduces a new Alzheimer's prediction model using IoT and deep structured architectures. A new smart Alzheimer’s patient monitoring system is developed by processing healthcare data using IoT devices. Initially, Alzheimer’s patients are detected from the set of patients using “enhanced deep residual network–long short-term memory (DRN-LSTM).” Here, the detection process is done with the data associated with the patients. The optimal feature selection phase and enhanced deep convolutional network (DCN) and deep residual network (DRN)-based detection are accomplished by parameter-improved horse herd optimization algorithm (PI-HHO). The monitored data involve audio, data, and video from the sensors based on the location and movements of patients. Next, the gathered data are forwarded to the optimal feature selection with the same algorithm and predicted the abnormalities through enhanced DNN + LSTM using PI-HHO. Thirdly, the abnormal patients are alerted to the nearby hospital for appropriate treatment and monitoring. All through the result evaluation, the accuracy and precision rate of the recommended Alzheimer’s patient monitoring system attain 98% and 97%. Thus, this smart patient prediction model ensures the high-quality results in terms of standard performance metrics while evaluating with other algorithms.
PUResNet: prediction of protein-ligand binding sites using deep residual neural network
Background Predicting protein-ligand binding sites is a fundamental step in understanding the functional characteristics of proteins, which plays a vital role in elucidating different biological functions and is a crucial step in drug discovery. A protein exhibits its true nature after binding to its interacting molecule known as a ligand that binds only in the favorable binding site of the protein structure. Different computational methods exploiting the features of proteins have been developed to identify the binding sites in the protein structure, but none seems to provide promising results, and therefore, further investigation is required. Results In this study, we present a deep learning model PUResNet and a novel data cleaning process based on structural similarity for predicting protein-ligand binding sites. From the whole scPDB (an annotated database of druggable binding sites extracted from the Protein DataBank) database, 5020 protein structures were selected to address this problem, which were used to train PUResNet. With this, we achieved better and justifiable performance than the existing methods while evaluating two independent sets using distance, volume and proportion metrics.
A Smart Battery Management System for Electric Vehicles Using Deep Learning-Based Sensor Fault Detection
Battery sensor data collection and transmission are essential for battery management systems (BMS). Since inaccurate battery data brought on by sensor faults, communication issues, or even cyber-attacks can impose serious harm on BMS and adversely impact the overall dependability of BMS-based applications, such as electric vehicles, it is critical to assess the durability of battery sensor and communication data in BMS. Sensor data are necessary for a BMS to perform every operation. Effective sensor fault detection is crucial for the sustainability and security of electric vehicle battery systems. This research suggests a system for battery data, especially lithium ion batteries, that allows deep learning-based detection and the classification of faulty battery sensor and transmission information. Initially, we collected the sensor data, and preprocessing was carried out using z-score normalization. The features were extracted using sparse principal component analysis (SPCA), and enhanced marine predators algorithm (EMPA) was used for feature selection. The BMS’s safety and dependability may be enhanced by the suggested incipient bat-optimized deep residual network (IB-DRN)-based false battery data identification and classification system. Simulations using MATLAB (2021a), along with statistics, machine learning, and a deep learning toolbox, along with experimental research, were used to show and assess how well the suggested strategy performs. It is shown to be superior to traditional approaches.
Evolving Deep Architecture Generation with Residual Connections for Image Classification Using Particle Swarm Optimization
Automated deep neural architecture generation has gained increasing attention. However, exiting studies either optimize important design choices, without taking advantage of modern strategies such as residual/dense connections, or they optimize residual/dense networks but reduce search space by eliminating fine-grained network setting choices. To address the aforementioned weaknesses, we propose a novel particle swarm optimization (PSO)-based deep architecture generation algorithm, to devise deep networks with residual connections, whilst performing a thorough search which optimizes important design choices. A PSO variant is proposed which incorporates a new encoding scheme and a new search mechanism guided by non-uniformly randomly selected neighboring and global promising solutions for the search of optimal architectures. Specifically, the proposed encoding scheme is able to describe convolutional neural network architecture configurations with residual connections. Evaluated using benchmark datasets, the proposed model outperforms existing state-of-the-art methods for architecture generation. Owing to the guidance of diverse non-uniformly selected neighboring promising solutions in combination with the swarm leader at fine-grained and global levels, the proposed model produces a rich assortment of residual architectures with great diversity. Our devised networks show better capabilities in tackling vanishing gradients with up to 4.34% improvement of mean accuracy in comparison with those of existing studies.
Machine Tool Wear Prediction Technology Based on Multi-Sensor Information Fusion
The intelligent monitoring of cutting tools used in the manufacturing industry is steadily becoming more convenient. To accurately predict the state of tools and tool breakages, this study proposes a tool wear prediction technique based on multi-sensor information fusion. First, the vibrational, current, and cutting force signals transmitted during the machining process were collected, and the features were extracted. Next, the Kalman filtering algorithm was used for feature fusion, and a predictive model for tool wear was constructed by combining the ResNet and long short-term memory (LSTM) models (called ResNet-LSTM). Experimental data for thin-walled parts obtained under various machining conditions were utilized to monitor the changes in tool conditions. A comparison between the ResNet and LSTM tool wear prediction models indicated that the proposed ResNet-LSTM model significantly improved the prediction accuracy compared to the individual LSTM and ResNet models. Moreover, ResNet-LSTM exhibited adaptive noise reduction capabilities at the front end of the network for signal feature extraction, thereby enhancing the signal feature extraction capability. The ResNet-LSTM model yielded an average prediction error of 0.0085 mm and a tool wear prediction accuracy of 98.25%. These results validate the feasibility of the tool wear prediction method proposed in this study.
Intelligent Diagnosis of Rolling Bearings Fault Based on Multisignal Fusion and MTF-ResNet
Existing diagnosis methods for bearing faults often neglect the temporal correlation of signals, resulting in easy loss of crucial information. Moreover, these methods struggle to adapt to complex working conditions for bearing fault feature extraction. To address these issues, this paper proposes an intelligent diagnosis method for compound faults in metro traction motor bearings. This method combines multisignal fusion, Markov transition field (MTF), and an optimized deep residual network (ResNet) to enhance the accuracy and effectiveness of diagnosis in the presence of complex working conditions. At the outset, the acquired vibration and acoustic emission signals are encoded into two-dimensional color feature images with temporal relevance by Markov transition field. Subsequently, the image features are extracted and fused into a set of comprehensive feature images with the aid of the image fusion framework based on a convolutional neural network (IFCNN). Afterwards, samples representing different fault types are presented as inputs to the optimized ResNet model during the training phase. Through this process, the model’s ability to achieve intelligent diagnosis of compound faults in variable working conditions is realized. The results of the experimental analysis verify that the proposed method can effectively extract comprehensive fault features while working in complex conditions, enhancing the efficiency of the detection process and achieving a high accuracy rate for the diagnosis of compound faults.
Smart crop disease monitoring system in IoT using optimization enabled deep residual network
The Internet of Things (IoT) has recently attracted substantial interest because of its diverse applications. In the agriculture sector, automated methods for detecting plant diseases offer numerous advantages over traditional methods. In the current study, a new model is developed to categorize plant diseases within an IoT network. The IoT network is simulated for monitoring crop diseases. Routing is performed with Henry Gas Chicken Swarm Optimization (HGCSO), which is designed by integrating Henry Gas Solubility Optimization (HGSO) and Chicken Swarm Optimization (CSO). The fitness parameters of the model include delay, energy, distance, and link lifetime (LLT). At the Base Station (BS), plant disease categorization is performed by collecting plant leaf images. Preprocessing is done on the input images using median filtering. Various features, such as Histogram of Oriented Gradient (HoG), statistical features, Spider Local Image Features (SLIF), and Local Ternary Patterns (LTP) are extracted. Plant disease categorization is carried out using a Deep Residual Network (DRN), which is trained using the developed Caviar Henry Gas Chicken Swarm Optimization (CHGCSO) that combines the CAViaR model with HGCSO. Comparative results show an accuracy of 94.3%, a maximum sensitivity of 93.3%, a maximum specificity of 92%, and an F1-score of 93%, indicating that the CHGCSO-based DRN outperforms existing methods. Graphic Abstract
Bearing fault diagnosis method based on SAGAN and improved ResNet
Traditional rolling bearing fault diagnosis methods struggle to adaptively extract features under complex industrial environments, and obtaining large and rich fault data under real operating conditions is difficult and expensive. Aiming at these issues, a bearing fault diagnosis method based on Self-Attention Generative Adversarial Networks (SAGAN) and Improved Deep Residual Networks (IResNet) was proposed (SAGAN_IResNet). Firstly, the original vibration signals are transformed into two-dimensional time–frequency images using continuous wavelet transform, providing both time domain and frequency domain information. Secondly, SAGAN is used to generate new samples similar to the original sample distribution, thereby expanding the data. Furthermore, a bearing fault diagnosis model is constructed using an improved residual network that incorporates the Multi-head Self-Attention (MHA) to adaptively obtain the global feature information, alleviate the problem of gradient dispersion and network degradation, and enhance the model’s diagnostic performance in the presence of strong noise and variable load conditions. Experimental verification is conducted using bearing datasets from Case Western Reserve University, Southeast University and Jiangnan University. The results show that the method proposed in this paper has strong bearing fault diagnosis performance under the condition of few samples, strong noise and variable load.
5G High-Precision Positioning in GNSS-Denied Environments Using a Positional Encoding-Enhanced Deep Residual Network
With the widespread deployment of 5G technology, high-precision positioning in global navigation satellite system (GNSS)-denied environments is a critical yet challenging task for emerging 5G applications, enabling enhanced spatial resolution, real-time data acquisition, and more accurate geolocation services. Traditional methods relying on single-source measurements like received signal strength information (RSSI) or time of arrival (TOA) often fail in complex multipath conditions. To address this, the positional encoding multi-scale residual network (PE-MSRN) is proposed, a novel deep learning framework that enhances positioning accuracy by deeply mining spatial information from 5G channel state information (CSI). By designing spatial sampling with multigranular data and utilizing multi-source information in 5G CSI, a dataset covering a variety of positioning scenarios is proposed. The core of PE-MSRN is a multi-scale residual network (MSRN) augmented by a positional encoding (PE) mechanism. The positional encoding transforms raw angle of arrival (AOA) data into rich spatial features, which are then mapped into a 2D image, allowing the MSRN to effectively capture both fine-grained local patterns and large-scale spatial dependencies. Subsequently, the PE-MSRN algorithm that integrates ResNet residual networks and multi-scale feature extraction mechanisms is designed and compared with the baseline convolutional neural network (CNN) and other comparison methods. Extensive evaluations across various simulated scenarios, including indoor autonomous driving and smart factory tool tracking, demonstrate the superiority of our approach. Notably, PE-MSRN achieves a positioning accuracy of up to 20 cm, significantly outperforming baseline CNNs and other neural network algorithms in both accuracy and convergence speed, particularly under real measurement conditions with higher SNR and fine-grained grid division. Our work provides a robust and effective solution for developing high-fidelity 5G positioning systems.
Spectrogram based multi-task audio classification
Audio classification is regarded as a great challenge in pattern recognition. Although audio classification tasks are always treated as independent tasks, tasks are essentially related to each other such as speakers’ accent and speakers’ identification. In this paper, we propose a Deep Neural Network (DNN)-based multi-task model that exploits such relationships and deals with multiple audio classification tasks simultaneously. We term our model as the gated Residual Networks (GResNets) model since it integrates Deep Residual Networks (ResNets) with a gate mechanism, which extract better representations between tasks compared with Convolutional Neural Networks (CNNs). Specifically, two multiplied convolutional layers are used to replace two feed-forward convolution layers in the ResNets. We tested our model on multiple audio classification tasks and found that our multi-task model achieves higher accuracy than task-specific models which train the models separately.