Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,045 result(s) for "Deficiency Diseases - immunology"
Sort by:
Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection
Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutic and public health strategies. Viral–host interactions can guide discovery of disease regulators, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of coronaviruses. To determine whether conditions associated with dysregulated complement or coagulation systems impact disease, we performed a retrospective observational study and found that history of macular degeneration (a proxy for complement-activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis and hemorrhage) are risk factors for SARS-CoV-2-associated morbidity and mortality—effects that are independent of age, sex or history of smoking. Transcriptional profiling of nasopharyngeal swabs demonstrated that in addition to type-I interferon and interleukin-6-dependent inflammatory responses, infection results in robust engagement of the complement and coagulation pathways. Finally, in a candidate-driven genetic association study of severe SARS-CoV-2 disease, we identified putative complement and coagulation-associated loci including missense, eQTL and sQTL variants of critical complement and coagulation regulators. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multimodal analytical approach to reveal determinants and predictors of immunity, susceptibility and clinical outcome associated with infection. A combination of clinical and molecular analyses supports an association between disorders of immune complement or coagulation with poor outcome in patients with SARS-CoV-2 infection.
Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis
Zinc is an essential trace element for living organisms and their biological processes. Zinc plays a key role in more than 300 enzymes and it is involved in cell communication, proliferation, differentiation and survival. Zinc plays also a role in regulating the immune system with implications in pathologies where zinc deficiency and inflammation are observed. In order to examine the experimental evidence reported in the literature regarding zinc levels in the body of patients with autoimmune disorders compared to control individuals, a systematic review and meta-analysis were performed. From 26,095 articles identified by literature search, only 179 of them were considered potentially relevant for our study and then examined. Of the 179 articles, only 62 satisfied the inclusion criteria. Particularly for Fixed Model, Zn concentration in both serum (mean effect = −1.19; confidence interval: −1.26 to −1.11) and plasma (mean effect = −3.97; confidence interval: −4.08 to −3.87) samples of autoimmune disease patients was significantly lower than in controls. The data presented in our work, although very heterogeneous in the manner of collecting and investigating samples, have proved to be extremely consistent in witnessing a deficiency of zinc in serum and plasma of patients compared to controls.
Effect of threonine deficiency on intestinal integrity and immune response to feed withdrawal combined with coccidial vaccine challenge in broiler chicks
For this study, threonine (Thr) deficiency was hypothesised to exacerbate the intestinal damage induced by feed withdrawal with coccidial infection because of its high obligatory requirement by the gut; two dietary Thr treatments (0·49 and 0·90 %) were applied to chicks from 0 to 21 d of age. At 13 d of age, feed was withdrawn for 24 h from one-half of birds of each dietary treatment with subsequent gavage of a 25× dose of coccidial vaccine. Overall, there were four treatments with eight replicate cages per treatment. Under combined challenge, birds fed the Thr-deficient diet had 38 % lower 13–21-d body weight gain (P≤0·05) compared with birds fed the Thr-control diet. At 21 d, the challenged group fed low Thr had higher number of oocysts (+40 %, P=0·03) and lower crypt depth (−31 %, P<0·01). In addition, birds fed the low-Thr diet had higher gut permeability as measured after 2 h of administration of fluorescein isothiocyanate-dextran (3–5 kDa, P<0·01), which may be attributed to decreased IgA production (P=0·03) in the ileum. In caecal tonsils, the challenged group fed low Thr had lower CD3:Bu-1 ratio (P≤0·05), along with a tendency for lower CCR9 mRNA expression in birds fed the low-Thr diet (P=0·10). In addition, Thr deficiency tended to increase IL-10 mRNA expression regardless of infection (P=0·06), but did not change interferon-γ mRNA expression upon coccidial infection (P>0·05). Overall, Thr deficiency worsened the detrimental effects of combined feed withdrawal and coccidial infection on growth performance and oocyst shedding by impairing intestinal morphology, barrier function, lymphocyte profiles and their cytokine expressions.
Cardiac changes in apoptosis, inflammation, oxidative stress, and nitric oxide system induced by prenatal and postnatal zinc deficiency in male and female rats
PurposeZinc restriction during fetal and postnatal development could program cardiovascular diseases in adulthood. The aim of this study was to determine the effects of zinc restriction during fetal life, lactation, and/or post-weaning growth on cardiac inflammation, apoptosis, oxidative stress, and nitric oxide system of male and female adult rats.MethodsWistar rats were fed a low- or a control zinc diet during pregnancy and up to weaning. Afterward, offspring were fed either a low- or a control zinc diet until 81 days of life. IL-6 and TNF-α levels, TUNEL assay, TGF-β1 expression, thiobarbituric acid-reactive substances that determine lipoperoxidation damage, NADPH oxidase-dependent superoxide anion production, antioxidant and nitric oxide synthase activity, mRNA and protein expression of endothelial nitric oxide synthase, and serine1177 phosphorylation isoform were determined in left ventricle.ResultsZinc deficiency activated apoptotic and inflammatory processes and decreased TGF-β1 expression and nitric oxide synthase activity in cardiac tissue of both sexes. Male zinc-deficient rats showed no changes in endothelial nitric oxide synthase expression, but a lower serine1177 phosphorylation. Zinc deficiency induced an increase in antioxidant enzymes activity and no differences in lipoperoxidation products levels in males. Females were less sensitive to this deficiency exhibiting lower increase in apoptosis, lower decrease in expression of TGF-β1, and higher antioxidant and nitric oxide enzymes activities. A zinc-adequate diet during postnatal life reversed most of these mechanisms.ConclusionPrenatal and postnatal zinc deficiency induces alterations in cardiac apoptotic, inflammatory, oxidative, and nitric oxide pathways that could predispose the onset of cardiovascular diseases in adult life.
Could the beneficial effects of dietary calcium on obesity and diabetes control be mediated by changes in intestinal microbiota and integrity?
Evidence from animal and human studies has associated gut microbiota, increased translocation of lipopolysaccharide (LPS) and reduced intestinal integrity (II) with the inflammatory state that occurs in obesity and type 2 diabetes mellitus (T2DM). Consumption of Ca may favour body weight reduction and glycaemic control, but its influence on II and gut microbiota is not well understood. Considering the impact of metabolic diseases on public health and the role of Ca on the pathophysiology of these diseases, this review critically discusses possible mechanisms by which high-Ca diets could affect gut microbiota and II. Published studies from 1993 to 2015 about this topic were searched and selected from Medline/PubMed, Scielo and Lilacs databases. High-Ca diets seem to favour the growth of lactobacilli, maintain II (especially in the colon), reduce translocation of LPS and regulate tight-junction gene expression. We conclude that dietary Ca might interfere with gut microbiota and II modulations and it can partly explain the effect of Ca on obesity and T2DM control. However, further research is required to define the supplementation period, the dose and the type of Ca supplement (milk or salt) required for more effective results. As Ca interacts with other components of the diet, these interactions must also be considered in future studies. We believe that more complex mechanisms involving extraintestinal disorders (hormones, cytokines and other biomarkers) also need to be studied.
Nutritional imbalances and infections affect the thymus: consequences on T-cell-mediated immune responses
The thymus gland, where T lymphocyte development occurs, is targeted in malnutrition secondary to protein energy deficiency. There is a severe thymic atrophy, resulting from massive thymocyte apoptosis (particularly affecting the immature CD4+CD8+ cell subset) and decrease in cell proliferation. The thymic microenvironment (the non-lymphoid compartment that drives intrathymic T-cell development) is also affected in malnutrition: morphological changes in thymic epithelial cells were found, together with a decrease of thymic hormone production, as well as an increase of intrathymic contents of extracellular proteins. Profound changes in the thymus can also be seen in deficiencies of vitamins and trace elements. Taking Zn deficiency as an example, there is a substantial thymic atrophy. Importantly, marginal Zn deficiency in AIDS subjects, children with diarrhoea and elderly persons, significantly impairs the host's immunity, resulting in an increased risk of opportunistic infections and mortality; effects that are reversed by Zn supplementation. Thymic changes also occur in acute infectious diseases, including a severe thymic atrophy, mainly due to the depletion of CD4+CD8+ thymocytes, decrease in thymocyte proliferation, in parallel to densification of the epithelial network and increase in the extracellular matrix contents, with consequent disturbances in thymocyte migration and export. In conclusion, the thymus is targeted in several conditions of malnutrition as well as in acute infections. These changes are related to the impaired peripheral immune response seen in malnourished and infected individuals. Thus, strategies inducing thymus replenishment should be considered as adjuvant therapeutics to improve immunity in malnutrition and/or acute infectious diseases.
Nutrition and the psychoneuroimmunology of postpartum depression
Postpartum depression (PPD) is a relatively common and often severe mood disorder that develops in women after childbirth. The aetiology of PPD is unclear, although there is emerging evidence to suggest a psychoneuroimmune connection. Additionally, deficiencies in n-3 PUFA, B vitamins, vitamin D and trace minerals have been implicated. This paper reviews evidence for a link between micronutrient status and PPD, analysing the potential contribution of each micronutrient to psychoneuroimmunological mechanisms of PPD. Articles related to PPD and women's levels of n-3 PUFA, B vitamins, vitamin D and the trace minerals Zn and Se were reviewed. Findings suggest that while n-3 PUFA levels have been shown to vary inversely with PPD and link with psychoneuroimmunology, there is mixed evidence regarding the ability of n-3 PUFA to prevent or treat PPD. B vitamin status is not clearly linked to PPD, even though it seems to vary inversely with depression in non-perinatal populations and may have an impact on immunity. Vitamin D and the trace minerals Zn and Se are linked to PPD and psychoneuroimmunology by intriguing, but small, studies. Overall, evidence suggests that certain micronutrient deficiencies contribute to the development of PPD, possibly through psychoneuroimmunological mechanisms. Developing a better understanding of these mechanisms is important for guiding future research, clinical practice and health education regarding PPD.
Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice
It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams.
Effects of Zinc Deficiency on Th1 and Th2 Cytokine Shifts
Nutritional deficiency of zinc is widespread throughout developing countries, and zincdeficient persons have increased susceptibility to a variety of pathogens. Zinc deficiency in an experimental human model caused an imbalance between Th1 and Th2 functions. Production of interferon-γ and interleukin (IL)-2 (products of Th1) were decreased, whereas production of IL-4, IL-6, and IL-10 (products of Th2) were not affected during zinc deficiency. Zinc deficiency decreased natural killer cell lytic activity and percentage of precursors of cytolytic T cells. In HuT-78, a Th0 cell line, zinc deficiency decreased gene expression of thymidine kinase, delayed cell cycle, and decreased cell growth. Gene expression of IL-2 and IL-2 receptors (both α and β) and binding of NF-κB to DNA were decreased by zinc deficiency in HuT-78. Decreased production of IL-2 in zinc deficiency may be due to decreased activation of NF-κB and subsequent decreased gene expression of IL-2 and IL-2 receptors.
Nutrition and the immune system from birth to old age
For millennia, food has been at the center of social events, in times of joy and in times of sorrow. Protein-energy malnutrition is associated with a significant impairment of cell-mediated immunity, phagocyte function, complement system, secretory immunoglobulin A antibody concentrations, and cytokine production. Deficiency of single nutrients also results in altered immune response: this is observed even when the deficiency state is relatively mild. Of the micronutrients, zinc, selenium, iron, copper, vitamins A, C, E and B(6), and folic acid have important influences on immune responses. Overnutrition and obesity also reduce immunity. Low-birth-weight infants have a prolonged impairment of cell-mediated immunity that can be partly restored by providing extra amounts of dietary zinc. In the elderly, impaired immunity can be enhanced by modest amounts of a combination of micronutrients. These findings have considerable practical and public health significance.