Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,602 result(s) for "Deformities"
Sort by:
Comprehensive clinical and molecular studies in split-hand/foot malformation: identification of two plausible candidate genes (LRP6 and UBA2)
Split-hand/foot malformation (SHFM) is a clinically and genetically heterogeneous condition. We sequentially performed screening of the previously identified Japanese founder 17p13.3 duplication/triplication involving BHLHA9, array comparative genomic hybridization, and whole exome sequencing (WES) in newly recruited 41 Japanese families with non-syndromic and syndromic SHFM. We also carried out WES in seven families with nonsyndromic and syndromic SHFM in which underlying genetic causes including pathogenic copy-number variants (CNVs) remained undetected in our previous studies of 56 families. Consequently, we identified not only known pathogenic CNVs (17p13.3 duplications/triplications [n = 21], 2q31 deletion [n = 1], and 10q24 duplications [n = 3]) and rare variants in known causative genes (TP63 [n = 3], DLX5 [n = 1], IGF2 [n = 1], WNT10B [n = 3], WNT10B/PORCN [n = 1], and PORCN [n = 1]), but also a de novo 19q13.11 deletion disrupting UBA2 (n = 1) and variants that probably affect function in LRP6 (n = 1) and UBA2 (n = 1). Thus, together with our previous data based on testing of 56 families, molecular studies for a total of 97 families with SHFM revealed underlying genetic causes in 75 families, and clinical studies for the 75 families indicated a certain degree of correlation between genetic causes and phenotypes. The results imply that SHFM primarily occurs as a genetic disorder with genotype–phenotype correlations. Furthermore, the results together with previous data such as the development of SHFM in Lrp6 knockout mice, the presence of SHFM in two subjects with 19q13 deletions involving UBA2, and strong mouse Uba2 expression in the developing limb buds, imply that LRP6 and UBA2 represent plausible candidate genes for SHFM.
Congenital limb deficiency in Japan: a cross-sectional nationwide survey on its epidemiology
Background Congenital limb deficiency is a rare and intractable disease, which impairs both function and appearance of the limbs. To establish adequate medical care, it is necessary to reveal the actual conditions and problems associated with this disease. However, there have been no extensive epidemiological surveys in Japan addressing this disease. This is the first nationwide epidemiological survey of congenital limb deficiency in this country. Methods With the cooperation of epidemiology experts, we performed a two-stage nationwide survey to estimate the number of patients with congenital limb deficiency and reveal basic patient features. We targeted orthopaedic surgery, paediatric, and plastic surgery departments. Hospitals were categorized according to the institution type and the number of hospital beds; hospitals were randomly selected from these categories. We selected 2283 departments from a total 7825 departments throughout Japan. In this study, we defined congenital limb deficiency as partial or total absence of the limbs, proximal to the proximal interphalangeal joint of the fingers/lesser toes or interphalangeal joint of the thumb/great toe. We distributed the first survey querying the number of initial patient visits from January 2014 to December 2015. Targets of the second survey were departments that reported one or more initial patient visits in the first survey. Results In the first survey, 1767 departments responded (response rate: 77.4%). Among them, 161 departments reported one or more initial patient visits. We conducted the second survey among these 161 departments, of which 96 departments responded (response rate: 59.6%). The estimated number of initial visits by patients with congenital limb deficiency was 417 (95% confidence interval: 339–495) per year in 2014 and 2015. The estimated prevalence of congenital limb deficiency in Japan was 4.15 (95% confidence interval: 3.37–4.93) per 10,000 live births. The sex ratio was 1.40. Upper limbs were more affected than lower limbs. Conclusions We revealed the estimated number of initial patient visits per year and birth prevalence of congenital limb deficiency in Japan. Our results will contribute to establishing the disease concept and grades of severity of congenital limb deficiency.
Extensor mechanism dysfunction and hand deformities caused by Dupuytren’s disease: Surgical and rehabilitation perspectives
Dupuytren’s disease is a common fibroproliferative disorder that primarily affects the palm of the hand. While the disease is known for its characteristic palmar contractures, it also has a potential impact on the extensor mechanism of the hand, resulting in the development of boutonniere deformity, swan-neck deformity, and persistent metacarpophalangeal joint contracture due to extensor capsule stretching and tendon instability. These imbalances are challenging to correct under general or regional anesthesia. Wide awake local anesthesia without a tourniquet allows active range of motion and intraoperative patient collaboration. By understanding the underlying mechanisms and structures involved in these deformities and correcting them under local anesthesia without a tourniquet, hand surgeons can become more confident in correcting the deformity, demonstrating it to the patient, optimizing the rehabilitation protocol, and improving patient outcomes. •Examines Dupuytren's disease impact on extensor mechanism imbalances in the hand.•Principles of corrective surgery for extensor deformities secondary to Dupuytren.•Discuss pre- and postoperative hand therapy strategies.
VACTERL/VATER Association
VACTERL/VATER association is typically defined by the presence of at least three of the following congenital malformations: vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, renal anomalies, and limb abnormalities. In addition to these core component features, patients may also have other congenital anomalies. Although diagnostic criteria vary, the incidence is estimated at approximately 1 in 10,000 to 1 in 40,000 live-born infants. The condition is ascertained clinically by the presence of the above-mentioned malformations; importantly, there should be no clinical or laboratory-based evidence for the presence of one of the many similar conditions, as the differential diagnosis is relatively large. This differential diagnosis includes (but is not limited to) Baller-Gerold syndrome, CHARGE syndrome, Currarino syndrome, deletion 22q11.2 syndrome, Fanconi anemia, Feingold syndrome, Fryns syndrome, MURCS association, oculo-auriculo-vertebral syndrome, Opitz G/BBB syndrome, Pallister-Hall syndrome, Townes-Brocks syndrome, and VACTERL with hydrocephalus. Though there are hints regarding causation, the aetiology has been identified only in a small fraction of patients to date, likely due to factors such as a high degree of clinical and causal heterogeneity, the largely sporadic nature of the disorder, and the presence of many similar conditions. New genetic research methods offer promise that the causes of VACTERL association will be better defined in the relatively near future. Antenatal diagnosis can be challenging, as certain component features can be difficult to ascertain prior to birth. The management of patients with VACTERL/VATER association typically centers around surgical correction of the specific congenital anomalies (typically anal atresia, certain types of cardiac malformations, and/or tracheo-esophageal fistula) in the immediate postnatal period, followed by long-term medical management of sequelae of the congenital malformations. If optimal surgical correction is achievable, the prognosis can be relatively positive, though some patients will continue to be affected by their congenital malformations throughout life. Importantly, patients with VACTERL association do not tend to have neurocognitive impairment.
Camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome
Camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) is a rare autosomal recessive disease caused by mutation in proteoglycan 4 (PRG4) gene on chromosome 1q25-q31. We faced a dilemma and delay in diagnosis in two sisters. The elder sister had pericardial effusion with constrictive pericarditis, underwent pericardiectomy and received empirical treatment for suspected tuberculosis. After 2 years, she developed bilateral knee swelling with restriction of movement. At the same time, her younger sister also presented with bilateral knee swelling which aroused the suspicion of genetic disease. The whole-genome sequencing revealed homozygous PRG4 mutation suggestive of CACP syndrome.
Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation
Thalidomide is a potent teratogen that induces a range of birth defects, most commonly of the developing limbs. The mechanisms underpinning the teratogenic effects of thalidomide are unclear. Here we demonstrate that loss of immature blood vessels is the primary cause of thalidomide-induced teratogenesis and provide an explanation for its action at the cell biological level. Antiangiogenic but not antiinflammatory metabolites/analogues of thalidomide induce chick limb defects. Both in vitro and in vivo, outgrowth and remodeling of more mature blood vessels is blocked temporarily, whereas newly formed, rapidly developing, angiogenic vessels are lost. Such vessel loss occurs upstream of changes in limb morphogenesis and gene expression and, depending on the timing of drug application, results in either embryonic death or developmental defects. These results explain both the timing and relative tissue specificity of thalidomide embryopathy and have significant implications for its use as a therapeutic agent.
Rare case of systemic lupus with manifestation of FS Jaccoud arthropathy: a case report and literature review
Background François-Sigismond Jaccoud arthropathy (FSJA) is a rare, secondary joint disease characterised by joint deformities without bone erosions, with a “reducible” pattern. Substantial knowledge exists in this area; however, the pathogenesis of FSJA remains indefinite, and clear diagnostic criteria are lacking. Moreover, preventive measures and specialised treatment interventions for the development of FSJA are needed. Thus, in this novel report, we present the case of a 24-year-old male patient with secondary FSJA, characterised by a prolonged disease course, early atypical symptoms, and an unclear primary systemic lupus erythematosus (SLE) diagnosis. Our objective was to provide further guidance regarding the pathogenesis, diagnosis, and treatment of FSJA secondary to SLE. Case presentation The patient presented with a 9-year medical history of polyarthralgia. Furthermore, a generalised rash of the lower limbs and hand deformities manifested over a 6-month duration, with symptoms worsening over a week. Physical examination revealed butterfly-shaped facial erythema, hand deformities, and arthralgia. Radiography revealed joint deformities without bone erosions. Laboratory findings indicated proteinuria, positive antinuclear antibodies, and decreased levels of complement components 3 and 4. Based on the 2019 European League Against Rheumatism/American College of Rheumatology classification criteria, the diagnoses of lupus nephritis (LN) and FSJA, secondary to SLE were made. The patient’s SLE LN and joint symptoms improved after a year of intravenous belimumab infusion; in addition to oral methylprednisolone, hydroxychloroquine, and mycophenolate mofetil. Additionally, his hand deformities did not considerably worsen. Conclusions FSJA secondary to SLE is rare; nonetheless, further attention and studies regarding this condition are required. Clinically, the differential diagnosis of FSJA should routinely be performed to avoid a misdiagnosis. The manifestation of early joint symptoms without joint deformation requires regular examinations of the joints, in patients with SLE. The early diagnosis and prompt management of FSJA will thus be ensured, reducing the impact on their quality of life.
Duplication of 10q24 locus: broadening the clinical and radiological spectrum
Split-hand–split-foot malformation (SHFM) is a rare condition that occurs in 1 in 8500–25,000 newborns and accounts for 15% of all limb reduction defects. SHFM is heterogeneous and can be isolated, associated with other malformations, or syndromic. The mode of inheritance is mostly autosomal dominant with incomplete penetrance, but can be X-linked or autosomal recessive. Seven loci are currently known: SHFM1 at 7q21.2q22.1 (DLX5 gene), SHFM2 at Xq26, SHFM3 at 10q24q25, SHFM4 at 3q27 (TP63 gene), SHFM5 at 2q31 and SHFM6 as a result of variants in WNT10B (chromosome 12q13). Duplications at 17p13.3 are seen in SHFM when isolated or associated with long bone deficiency. Tandem genomic duplications at chromosome 10q24 involving at least the DACTYLIN gene are associated with SHFM3. No point variant in any of the genes residing within the region has been identified so far, but duplication of exon 1 of the BTRC gene may explain the phenotype, with likely complex alterations of gene regulation mechanisms that would impair limb morphogenesis. We report on 32 new index cases identified by array-CGH and/or by qPCR, including some prenatal ones, leading to termination for the most severe. Twenty-two cases were presenting with SHFM and 7 with monodactyly only. Three had an overlapping phenotype. Additional findings were identified in 5 (renal dysplasia, cutis aplasia, hypogonadism and agenesis of corpus callosum with hydrocephalus). We present their clinical and radiological findings and review the literature on this rearrangement that seems to be one of the most frequent cause of SHFM.
Abnormal urethra formation in mouse models of Split-hand/split-foot malformation type 1 and type 4
Urogenital birth defects are one of the common phenotypes observed in hereditary human disorders. In particular, limb malformations are often associated with urogenital developmental abnormalities, as the case for Hand–foot–genital syndrome displaying similar hypoplasia/agenesis of limbs and external genitalia. Split-hand/split-foot malformation (SHFM) is a syndromic limb disorder affecting the central rays of the autopod with median clefts of the hands and feet, missing central fingers and often fusion of the remaining ones. SHFM type 1 (SHFM1) is linked to genomic deletions or rearrangements, which includes the distal-less-related homeogenes DLX5 and DLX6 as well as DSS1. SHFM type 4 (SHFM4) is associated with mutations in p63 , which encodes a p53-related transcription factor. To understand that SHFM is associated with urogenital birth defects, we performed gene expression analysis and gene knockout mouse model analyses. We show here that Dlx5 , Dlx6 , p63 and Bmp7 , one of the p63 downstream candidate genes, are all expressed in the developing urethral plate (UP) and that targeted inactivation of these genes in the mouse results in UP defects leading to abnormal urethra formation. These results suggested that different set of transcription factors and growth factor genes play similar developmental functions during embryonic urethra formation. Human SHFM syndromes display multiple phenotypes with variations in addition to split hand foot limb phenotype. These results suggest that different genes associated with human SHFM could also be involved in the aetiogenesis of hypospadias pointing toward a common molecular origin of these congenital malformations.
Spectrum of congenital anomalies among VACTERL cases: a EUROCAT population-based study
BackgroundThe VACTERL (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, Limb abnormalities) association is the non-random occurrence of at least three of these congenital anomalies: vertebral, anal, cardiac, tracheo-esophageal, renal, and limb anomalies. Diagnosing VACTERL patients is difficult, as many disorders have multiple features in common with VACTERL. The aims of this study were to clearly outline component features, describe the phenotypic spectrum among the largest group of VACTERL patients thus far reported, and to identify phenotypically similar subtypes.MethodsA case-only study was performed assessing data on 501 cases recorded with VACTERL in the JRC-EUROCAT (Joint Research Centre-European Surveillance of Congenital Anomalies) central database (birth years: 1980–2015). We differentiated between major and minor VACTERL features and anomalies outside the VACTERL spectrum to create a clear definition of VACTERL.ResultsIn total, 397 cases (79%) fulfilled our VACTERL diagnostic criteria. The most commonly observed major VACTERL features were anorectal malformations and esophageal atresia/tracheo-esophageal fistula (both occurring in 62% of VACTERL cases), followed by cardiac (57%), renal (51%), vertebral (33%), and limb anomalies (25%), in every possible combination. Three VACTERL subtypes were defined: STRICT-VACTERL, VACTERL-LIKE, and VACTERL-PLUS, based on severity and presence of additional congenital anomalies.ConclusionThe clearly defined VACTERL component features and the VACTERL subtypes introduced will improve both clinical practice and etiologic research.