Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
41 result(s) for "Degree of synchrony"
Sort by:
Testing the priority-of-access model in a seasonally breeding primate species
In mammals, when females are clumped in space, male access to receptive females is usually determined by a dominance hierarchy based on fighting ability. In polygynandrous primates, as opposed to most mammalian species, the strength of the relationship between male social status and reproductive success varies greatly. It has been proposed that the degree to which paternity is determined by male rank decreases with increasing female reproductive synchrony. The priority-of-access model (PoA) predicts male reproductive success based on female synchrony and male dominance rank. To date, most tests of the PoA using paternity data involved nonseasonally breeding species. Here, we examine whether the PoA explains the relatively low reproductive skew in relation to dominance rank reported in the rhesus macaque, a strictly seasonal species. We collected behavioral, genetic, and hormonal data on one group of the free-ranging population on Cayo Santiago (Puerto Rico) for 2 years. The PoA correctly predicted the steepness of male reproductive skew, but not its relationship to male dominance: the most successful sire, fathering one third of the infants, was high but not top ranking. In contrast, mating success was not significantly skewed, suggesting that other mechanisms than social status contributed to male reproductive success. Dominance may be less important for paternity in rhesus macaques than in other primate species because it is reached through queuing rather than contest, leading to alpha males not necessarily being the strongest or most attractive male. More work is needed to fully elucidate the mechanisms determining paternity in rhesus macaques.
Decoding Neuronal Spike Trains: How Important Are Correlations?
It has been known for >30 years that neuronal spike trains exhibit correlations, that is, the occurrence of a spike at one time is not independent of the occurrence of spikes at other times, both within spike trains from single neurons and across spike trains from multiple neurons. The presence of these correlations has led to the proposal that they might form a key element of the neural code. Specifically, they might act as an extra channel for information, carrying messages about events in the outside world that are not carried by other aspects of the spike trains, such as firing rate. Currently, there is no general consensus about whether this proposal applies to real spike trains in the nervous system. This is largely because it has been hard to separate information carried in correlations from that not carried in correlations. Here we propose a framework for performing this separation. Specifically, we derive an information-theoretic cost function that measures how much harder it is to decode neuronal responses when correlations are ignored than when they are taken into account. This cost function can be readily applied to real neuronal data.
Asynchronous coral spawning patterns on equatorial reefs in Kenya
This study examined patterns of reef coral reproduction on lagoonal reefs adjacent to Mombasa in Kenya, at a latitude of 4° S. A total of 401 colonies comprising 20Acroporaspecies was marked and repeatedly sampled between 2003 and 2005 to determine patterns of reproduction at the individual and population level. Spawning was inferred from the disappearance of mature oocytes and spermaries from sequential samples. In comparison to other regions, the overall pattern of coral reproduction in Kenya is one of asynchrony;Acroporaspecies release gametes over a 7 mo period (October to April), with some level of ’temporal reproductive isolation’ occurring between species in relation to the lunar month and lunar phase when the main spawning occurred. Extended gametogenic cycles were recorded inA. tenuis, A. validaandAcroporasp. 1, and quiescent non-reproductive periods between cycles were either very short or absent. Spawning occurred during both rising and maximum sea surface temperatures, during both neap and spring tides, and across all lunar periods. The findings from Kenyan reefs support the hypothesis of protracted breeding seasons and a breakdown of spawning synchrony nearer the equator. It is hypothesised that the high fecundities recorded in coral species in Kenya compared to other regions may allow individual reef coral populations to stagger their reproduction over 2 to 5 mo without incurring a significant reduction in fertilisation rates.
Adaptive Sex Allocation in Relation to Hatching Synchrony and Offspring Quality in House Wrens
Increased variance in the reproductive success of males relative to females favors mothers that optimally allocate sons and daughters to maximize their fitness return. In altricial songbirds, one influence on the fitness prospects of offspring arises through the order in which nestlings hatch from their eggs, which affects individual mass and size before nest leaving. In house wrens (Troglodytes aedon), the influence of hatching order depends on the degree of hatching synchrony, with greater variation in nestling mass and size within broods hatching asynchronously than in those hatching synchronously. Early-hatching nestlings in asynchronous broods were heavier and larger than their later-hatching siblings and nestlings in synchronous broods. The effect of hatching order was also sex specific, as the mass of males in asynchronous broods was more strongly influenced by hatching order than the mass of females, with increased variation in the mass of males relative to that of females. As predicted, mothers hatching their eggs asynchronously biased first-laid, first-hatching eggs toward sons and late-laid, late-hatching eggs toward daughters, whereas females hatching their eggs synchronously distributed the sexes randomly among the eggs of their clutch. We conclude that females allocate the sex of their offspring among the eggs of their clutch in a manner that maximizes their own fitness.
Population synchrony in small-world networks
Network topography ranges from regular graphs (linkage between nearest neighbours only) via small-world graphs (some random connections between nodes) to completely random graphs. Small-world linkage is seen as a revolutionary architecture for a wide range of social, physical and biological networks, and has been shown to increase synchrony between oscillating subunits. We study small-world topographies in a novel context: dispersal linkage between spatially structured populations across a range of population models. Regular dispersal between population patches interacting with density-dependent renewal provides one ecological explanation for the large-scale synchrony seen in the temporal fluctuations of many species, for example, lynx populations in North America, voles in Fennoscandia and grouse in the UK. Introducing a small-world dispersal kernel leads to a clear reduction in synchrony with both increasing dispersal rate and small-world dispersal probability across a variety of biological scenarios. Synchrony is also reduced when populations are affected by globally correlated noise. We discuss ecological implications of small-world dispersal in the frame of spatial synchrony in population fluctuations.
Synchronous dynamics and rates of extinction in spatially structured populations
We explore extinction rates using a spatially arranged set of subpopulations obeying Ricker dynamics. The population system is subjected to dispersal of individuals among the subpopulations as well as to local and global disturbances. We observe a tight positive correlation between global extinction rate and the level of synchrony in dynamics among thesubpopulations. Global disturbances and to a lesser extent, migration, are capable of synchronizing the temporal dynamics of the subpopulations over a rather wide span of the population growth rate r: Local noise decreases synchrony, as does increasing distance among the subpopulations. Synchrony also levels off with increasing r: in the chaotic region, subpopulations almost invariably behave asynchronously. We conclude that it is asynchrony that reduces the probability of global extinctions, not chaos as such: chaos is a special case only. The relationship between global extinction rate, synchronous dynamics and population growth rate is robust to changes in dispersal rates and ranges.
Does sex affect both individual and collective vigilance in social mammalian herbivores: the case of the eastern grey kangaroo
In several vertebrate taxa, males and females differ in the proportions of time they individually devote to vigilance, commonly attributed to sex differences in intra-specific competition or in absolute energy requirements. However, an effect of sex on collective vigilance is less often studied (and therefore rarely predicted), despite being relevant to any consideration of the adaptiveness of mixed- vs single-sex grouping. Controlling for group size, we studied the effect of sex on vigilance in the sexually dimorphic eastern grey kangaroo Macropus giganteus, analysing vigilance at two structural levels: individual vigilance and the group's collective vigilance. Knowing that group members in this species tend to synchronise their bouts of vigilance, we tested (for the first time) whether sex affects the degree of synchrony between group members. We found that females were individually more vigilant than males and that their vigilance rate was unaffected by the presence of males. Collective vigilance did not differ between female-only and mixed-sex groups of the same size. Vigilance in mixed-sex groups was neither more nor less synchronous than in single-sex groups of females, and the presence of males seemed not to affect the degree of synchrony between females. Sixty-six percent of vigilant acts were unique (performed when no other kangaroo was alert), and only about one unique vigilant act in every three induced a collective wave of vigilance. The proportions of vigilant acts that were unique were 60% for females but only 46% for males. However, the sexes differed little in the rates at which their unique vigilant acts were copied. This limited study shows that the differences in vigilance between male and female kangaroos had no discernible effect upon collective vigilance.
Landscape Effects on Temporal and Spatial Properties of Vole Population Fluctuations
Populations of northern small rodents have previously been observed to fluctuate in spatial synchrony over distances ranging from tens to hundreds of kilometers between sites. It has been suggested that this phenomenon is caused by common environmental perturbations, mobile predators or dispersal movements. However, very little focus has been given to how the physical properties of the geographic area over which synchrony occurs, such as landscape composition and climate, affect spatial population dynamics. This study reports on the spatial and temporal properties of vole population fluctuations in two areas of western Finland: one composed of large interconnected areas of agricultural farmland interspersed by forests and the other highly dominated by forest areas, containing more isolated patches of agricultural land. Furthermore, the more agricultural area exhibits somewhat milder winters with less snow than the forested area. We found the amplitude of vole cycles to be essentially the same in the two areas, suggesting that the relative amount of predation on small rodents by generalist versus specialist predators is similar in both areas. No seasonal differences in the timing of synchronization were observable for Microtus voles, whereas bank vole populations in field habitats appeared to become synchronized primarily during winter. Microtus populations in field habitats exhibited smaller spatial variation and a higher degree of synchrony in the more continuous agricultural landscape than in the forest-dominated landscape. We suggest that this inter-areal difference is due to differences in the degree of inter-patch connectivity, with predators and dispersal acting as the primary synchronizing agents. Bank vole populations in field habitats were more synchronized within the forest-dominated landscape, most likely reflecting the suitability of the inter-patch matrix and the possibility of dispersal. Our study clearly indicates that landscape composition needs to be taken into account when describing the spatial properties of small rodent population dynamics.
Sexual dimorphism, activity budget and synchrony in groups of sheep
The activity budget hypothesis has been proposed to explain the social segregation commonly observed in ungulate populations. This hypothesis suggests that differences in body size - i.e. between dimorphic males and females - may account for differences in activity budget. In particular, if females spend more time grazing and less time resting than males, activity synchrony would be reduced. Increased costs of maintaining synchrony despite differences in activity budget would facilitate group fragmentation and instability of mixed-sex groups. In this paper two prerequisites of the activity budget hypothesis were tested: (1) that males should spend less time feeding and more time resting than females in single-sex groups and (2) that lower activity synchrony should be observed in mixed-sex compared to single-sex groups. The activity budget and synchrony in mixed and single-sex groups of merino sheep (Ovis aries) of different sizes (2, 4, 6, 8 individuals) were measured in three contiguous 491-m(2) arenas located in a natural pasture. Three same-size groups, one of each category, were observed simultaneously. We found no sexual differences in the time spent inactive and active (i.e. grazing, standing, moving, interacting). Males spent significantly more time grazing and less time standing than females. These differences disappeared when yearling males were omitted from the group. Males and females had similar bite and step rates. Sheep of both sexes spent less time resting and more time grazing and moving and had lower bite rates when in mixed-sex groups than when in single-sex groups. The synchrony among visually isolated groups was near zero, indicating that they changed activities independently. On the contrary, within-group synchrony was high; however it was higher in single-sex groups, in particular for males, than in mixed-sex groups. Our results suggest that differences in activity budget and synchrony alone are insufficient to explain social segregation.
Life history strategies affect climate based spatial synchrony in population dynamics of West African freshwater fishes
Spatial synchrony in species abundance is a general phenomenon that has been found in populations representing virtually all major taxa. Dispersal among populations and synchronous stochastic effects (the so called \"Moran effect\") are the mechanisms most likely to explain such synchrony patterns. Very few studies have related the degree of spatial synchrony to the biological characteristics of species. Here we present a case where specific predictions can be made to relate river fish species characteristics and synchrony determined exclusively by a Moran effect through the expected sensitivity of species to the regional component of environmental stochasticity. By analyzing 23-year time series of abundance estimates in two isolated localities we show that species associated with synchronized reproduction during the wet season, high fecundity, small egg size and high gonado-somatic index (the so called \"periodic\" strategy) have a higher degree of spatial synchrony in population dynamics than species associated with the opposite traits (the so called \"equilibrium\" strategy). This is supported by significant relationships (P values <0.01) between species traits and the levels of synchrony after removing taxonomical relatedness. Spatial synchrony computed from summed annual total catches by groups of species, separated into strategy types also showed a significantly higher degree of synchrony for the periodic (r=0.83) than the equilibrium (r=0.46) group. Regional hydrological variability is likely to be partly responsible for the observed synchrony pattern and a regional discharge index showed better relationships with the periodic group, supporting the expected differential effect of regional environmental correlation on population dynamics.