Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
125 result(s) for "Demulsification."
Sort by:
Oilfield chemistry and its environmental impact
Consolidates the many different chemistries being employed to provide environmentally acceptable products through the upstream oil and gas industry.-- Provided by publisher.
Research and Application Progress of Crude Oil Demulsification Technology
The extraction and collection of crude oil will result in the formation of numerous complex emulsions, which will not only decrease crude oil production, raise the cost of extraction and storage, and worsen pipeline equipment loss, but also seriously pollute the environment because the oil in the emulsion can fill soil pores, lower the soil’s permeability to air and water, and create an oil film on the water’s surface to prevent air–water contact. At present, a variety of demulsification technologies have been developed, such as physical, chemical, biological and other new emulsion breaking techniques, but due to the large content of colloid and asphaltene in many crude oils, resulting in the increased stability of their emulsions and oil–water interfacial tension, interfacial film, interfacial charge, crude oil viscosity, dispersion, and natural surfactants have an impact on the stability of crude oil emulsions. Therefore, the development of efficient, widely applicable, and environmentally friendly demulsification technologies for crude oil emulsions remains an important research direction in the field of crude oil development and application. This paper will start from the formation, classification and hazards of crude oil emulsion, and comprehensively summarize the development and application of demulsification technologies of crude oil emulsion. The demulsification mechanism of crude oil emulsion is further analyzed, and the problems of crude oil demulsification are pointed out, so as to provide a theoretical basis and technical support for the development and application of crude oil demulsification technology in the future.
Application of Ionic Liquids for Chemical Demulsification: A Review
In recent years, ionic liquids have received increasing interests as an effective demulsifier due to their characteristics of non-flammability, thermal stability, recyclability, and low vapor pressure. In this study, emulsion formation and types, chemical demulsification system, the application of ionic liquids as a chemical demulsifier, and key factors affecting their performance were comprehensively reviewed. Future challenges and opportunities of ionic liquids application for chemical demulsification were also discussed. The review indicted that the demulsification performance was affected by the type, molecular weight, and concentration of ionic liquids. Moreover, other factors, including the salinity of aqueous phase, temperature, and oil types, could affect the demulsification process. It can be concluded that ionic liquids can be used as a suitable substitute for commercial demulsifiers, but future efforts should be required to develop non-toxic and less expensive ionic liquids with low viscosity, and the demulsification efficiency could be improved through the application of ionic liquids with other methods such as organic solvents.
Aggregation‐induced demulsification triggered by the hydrophilic fabric for the separation of highly emulsified oil droplets from water
A functional fabric with hierarchical structure consisting of basalt fibre fabric as a substrate and polyvinyl alcohol as a coating was developed, aiming at providing a low cost and high‐performance way to separate highly emulsified oil in water. The coating functioned as a hydrophilic gate for the penetration of water in the emulsion, whereas the micro‐channels formed in the fabric offered capillary force for the continuous flow of water. The synergy of these two materials led to the increase on the oil concentration in the liquid, which in turn enhanced the collision of emulsified oil droplets to aggregate into large ones in the emulsion and resulted separation from the water. Based on these findings, an aggregation‐induced demulsification process was proposed to explain the above phenomenon, and the mechanism was confirmed by studying the distribution of oil droplets in emulsion with a controlled separation degree. A functional fabric showed excellent performance to separate highly emulsified oil in water, aggregation‐induced demulsification process was proposed to explain the above phenomenon, and this was confirmed by studying the distribution of oil droplets in emulsion with a controlled separation degree.
Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles
The solid particles in the produced fluids from the oil wells treated by compound flooding can greatly stabilize the strength of the interfacial film and enhance the stability of the emulsion, increasing the difficulty of processing these produced fluids on the ground. In this paper, the oil phase and the water phase were separated from the SPAN series emulsions by electrical dehydration technology and adding demulsifier agents. The changing trends of the current at both ends of the electrodes were recorded during the process. The efficient demulsification of the emulsion containing solid particles was studied from the perspective of oil-water separation mechanisms. Combined with the method of molecular dynamics simulation, the effect of the addition of a demulsifier on the free movement characteristics of crude oil molecules at the position of the liquid film of the emulsion were further analyzed. The results indicated that the presence of solid particles greatly increased the emulsifying ability of the emulsion and reduced its size. Under the synergistic effect of demulsifier and electric dehydration, the demulsification effect of the emulsion increased significantly, and the demulsification rate could reach more than 82%. The addition of demulsifiers changed the stable surface state of the solid particles. The free movement ability of the surrounding crude oil molecules was enhanced, which led to a decrease in the strength of the emulsion film so that the water droplets in the emulsions were more likely to coalesce and break. These results are of great significance for the efficient treatment of wastewater from oilfields, promoting the sustainability of environment-friendly oilfield development.
The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review
Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.
Research Progress on Demulsification Technology and Mechanism for Oilfield Crude Oil
In petroleum recovery processes, crude oil emulsions serve a crucial yet complex dual role. While facilitating hydrocarbon transport from subterranean reservoirs to surface facilities, excessively stable emulsions create significant challenges in downstream dehydration operations. The heightened stability of these colloidal systems necessitates increased demulsifier dosages and elevated separation temperatures, thereby substantially escalating operational expenditures. This technological dichotomy underscores the critical need for a comprehensive understanding of emulsion formation mechanisms, comparative evaluation of demulsification methodologies, and fundamental insights into destabilization processes—all essential for optimizing field operations. Building upon systematic analysis of emulsion characteristics and stabilization mechanisms, this study presents a critical synthesis of contemporary physical and chemical demulsification technologies. We conduct a comparative assessment of their technical advantages and operational limitations, with particular emphasis on advancing chemical demulsification strategies. The paper provides a rigorous classification and mechanistic analysis of diverse demulsifier categories, elucidating their interfacial activity and molecular‐level interactions at oil–water interfaces. Looking toward future developments, we propose promising directions for next‐generation demulsifier design and emerging hybrid separation technologies. These forward‐looking perspectives aim to inform the development of cost‐effective dehydration solutions while addressing current technological gaps in heavy crude processing and environmentally sustainable demulsification.
An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions
The processing of crude oil often requires the extraction of a large amount of water. Frequently, crude oil is mixed with water to form water-in-crude oil emulsions as the result of factors such as high shear at the production wellhead and surface-active substances that are naturally present in crude oil. These emulsions are undesirable and require demulsification to remove the dispersed water and associated inorganic salts in order to meet production and transportation specifications. Additionally, the demulsification of these crude oil emulsions mitigates corrosion and catalyst poisoning and invariably maximizes the overall profitability of crude oil production. Recently, there has been growing research interest in developing workable solutions to the difficulties associated with transporting and refining crude oil emulsions and the restrictions on produced water discharge. Therefore, this paper reviews the recent research efforts on state-of-the-art demulsification techniques. First, an overview of crude oil emulsion types, formation, and stability is presented. Then, the parameters and mechanisms of emulsification formation and different demulsification techniques are extensively examined. It is worth noting that the efficiency of each of these techniques is dependent on the operating parameters and their interplay. Moreover, a more effective demulsification process could be attained by leveraging synergistic effects by combining one or more of these techniques. Finally, this literature review then culminates with propositions for future research. Therefore, the findings of this study can help for a better understanding of the formation and mechanisms of the various demulsification methods of crude oil to work on the development of green demulsifiers by different sources.
Molecular Dynamics Simulation for the Demulsification of O/W Emulsion under Pulsed Electric Field
A bidirectional pulsed electric field (BPEF) method is considered a simple and novel technique to demulsify O/W emulsions. In this paper, molecular dynamics simulation was used to investigate the transformation and aggregation behavior of oil droplets in O/W emulsion under BPEF. Then, the effect of surfactant (sodium dodecyl sulfate, SDS) on the demulsification of O/W emulsion was investigated. The simulation results showed that the oil droplets transformed and moved along the direction of the electric field. SDS molecules can shorten the aggregation time of oil droplets in O/W emulsion. The electrostatic potential distribution on the surface of the oil droplet, the elongation length of the oil droplets, and the mean square displacement (MSD) of SDS and asphaltene molecules under an electric field were calculated to explain the aggregation of oil droplets under the simulated pulsed electric field. The simulation also showed that the two oil droplets with opposite charges have no obvious effect on the aggregation of the oil droplets. However, van der Waals interactions between oil droplets was the main factor in the aggregation.
Crude oils mixtures: compatibility and kinetics of water-in-oil emulsions separation
Some oil fields produce from different reservoirs, which may be incompatible generating precipitates. These precipitates are often asphaltenes, which can be an emulsion stabilizing agent negatively affecting the oil treatment processes. In this work, the influence of oil incompatibility on the stabilization of water-in-oil emulsions was studied. Emulsions were evaluated from three different oils (A, B and C) and their mixtures (AB, AC, BC and ABC). The results showed that there is a relationship between separation kinetics of emulsions and asphaltene precipitation. The separation kinetics of the emulsions was faster for more compatible oils. We observed that oil A, which was the less stable regarding asphaltenes, and the ABC mixture, which was the most incompatible mixture, both presented the slowest kinetics of emulsion separation. On the other hand, mixture BC which had the highest compatibility among the other mixtures presented a faster kinetic of emulsion separation.