Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
541 result(s) for "Dendroctonus ponderosae"
Sort by:
Defense traits in the long-lived Great Basin bristlecone pine and resistance to the native herbivore mountain pine beetle
Mountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB) region, North America. Defense and susceptibility in two long-lived species, GB bristlecone pine (Pinus longaeva) and foxtail pine (P. balfouriana), are unclear, although they are sympatric with a common MPB host, limber pine (P. flexilis). We surveyed stands with sympatric GB bristlecone–limber pine and foxtail–limber pine to determine relative MPB attack susceptibility and constitutive defenses. MPB-caused mortality was extensive in limber, low in foxtail and absent in GB bristlecone pine. Defense traits, including constitutive monoterpenes, resin ducts and wood density, were higher in GB bristlecone and foxtail than in limber pine. GB bristlecone and foxtail pines have relatively high levels of constitutive defenses which make them less vulnerable to climate-driven MPB range expansion relative to other highelevation pines. Long-term selective herbivore pressure and exaptation of traits for tree longevity are potential explanations, highlighting the complexity of predicting plant–insect interactions under climate change.
Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack
Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole‐tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack.
Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate–beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle.
Aggregation and a strong Allee effect in a cooperative outbreak insect
Most species that are negatively impacted when their densities are low aggregate to minimize this effect. Aggregation has the potential to change how Allee effects are expressed at the population level. We studied the interplay between aggregation and Allee effects in the mountain pine beetle (Dendroctonus ponderosae Hopkins), an irruptive bark beetle that aggregates to overcome tree defenses. By cooperating to surpass a critical number of attacks per tree, the mountain pine beetle is able to breach host defenses, oviposit, and reproduce. Mountain pine beetles and Hymenopteran parasitoids share some biological features, the most notable of which is obligatory host death as a consequence of parasitoid attack and development. We developed spatiotemporal models of mountain pine beetle dynamics that were based on the Nicholson-Bailey framework but which featured beetle aggregation and a tree-level attack threshold. By fitting our models to data from a local mountain pine beetle outbreak, we demonstrate that due to aggregation, attack thresholds at the tree level can be overcome by a surprisingly low ratio of beetles per susceptible tree at the stand level. This results confirms the importance of considering aggregation in models of organisms that are subject to strong Allee effects.
A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees
Grosmannia clavigera is a bark beetle-vectored pine pathogen in the mountain pine beetle epidemic in western North America. Grosmannia clavigera colonizes pines despite the trees' massive oleoresin terpenoid defences. We are using a functional genomics approach to identify G. clavigera's mechanisms of adaptation to pine defences. We annotated the ABC transporters in the G. clavigera genome and generated RNA-seq transcriptomes from G. clavigera grown with a range of terpenes. We functionally characterized GcABC-G1, a pleiotropic drug resistance (PDR) transporter that was highly induced by terpenes, using qRT-PCR, gene knock-out and heterologous expression in yeast. Deleting GcABC-G1 increased G. clavigera's sensitivity to monoterpenes and delayed development of symptoms in inoculated young lodgepole pine trees. Heterologous expression of GcABC-G1 in yeast increased tolerance to monoterpenes. G. clavigera but not the deletion mutant, can use (+)-limonene as a carbon source. Phylogenetic analysis placed GcABC-G1 outside the ascomycete PDR transporter clades. G. clavigera appears to have evolved two mechanisms to survive and grow when exposed to monoterpenes: GcABC-G1 controls monoterpene levels within the fungal cells and G. clavigera uses monoterpenes as a carbon source. This work has implications for understanding adaptation to host defences in an important forest insect–fungal system, and potentially for metabolic engineering of terpenoid production in yeast.
Growth, Chemistry, and Genetic Profiles of Whitebark Pine Forests Affected by Climate-Driven Mountain Pine Beetle Outbreaks
Climate change-driven Dendroctonus ponderosae outbreaks in semi-naïve Pinus albicaulis may result in rapid natural selection for trees with genotypes and phenotypes associated with survival. In this study, we investigated whether survivors were genetically and chemically different from a living cohort of trees that escaped predation due to smaller size and estimated genetic diversity. We also examined how growth rate and climate sensitivity varied between beetle-killed and surviving trees. Dendroctonus ponderosae predominantly kills large diameter trees; therefore, we predicted that large surviving trees would have distinctive genetic profiles and, due to bottlenecking and drift, survivors would have lower genetic diversity than the abundant smaller mature trees that escaped predation. We found survivors were indeed genetically divergent from the smaller trees but, contrary to expectations, the smaller trees had lower diversity. This suggests that while beetles may select for trees with particular genotypes, other factors are also driving population genetic sub-structuring. Individual tree terpene profiles were diverse and varied by population but showed no clear relationship to survivorship. Two groups of trees with divergent sensitivities to climate were observed in each population, but neither was a clear indicator of survivorship or susceptibility to beetle attack. Growth rate was the best predictor of survivorship with survivors growing significantly slower than beetle-killed trees over their lifetimes although growth rates converged in years just prior to increased beetle activity. Overall, our results suggest that P. albicaulis forests show considerable divergence among populations and within-population genetic sub-structuring, and that they may contain complex mosaics of adaptive potentials to a variety of stressors including D. ponderosae . To protect the ability of this tree to adapt to increasing pressure from beetles, blister rust, and climate change, a top priority should be the maintenance of standing genetic diversity and adaptive shifts in allele frequencies.
Is Resistance to Mountain Pine Beetle Associated with Genetic Resistance to White Pine Blister Rust in Limber Pine?
Limber pine (Pinus flexilis James) co-evolved with the mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) and is now also challenged by the non-native pathogen Cronartium ribicola (J.C. Fisch.) that causes the lethal disease white pine blister rust (WPBR). Previous research suggests that trees infected with WPBR can be preferred hosts for MPB. Using resin duct traits associated with MPB resistance, we tested for a relationship between resistance to MPB and WPBR in limber pine, in the absence of either biological agent. These analyses will help evaluate if MPB historically may have contributed to natural selection for WPBR resistance in advance of WPBR invasion, and could help explain the unusually high frequency of the dominant Cr4 allele for complete resistance to WPBR in limber pine populations of the Southern Rocky Mountains. Resin duct production, density and relative duct area did not differ between healthy trees previously inferred to carry the dominant Cr4 allele and trees that lack it at 22 sites, though some duct traits varied with elevation. MPB resistance does not appear to have played an evolutionary role in contributing to the high frequency of Cr4 in naïve populations, however, MPB may affect the future evolution of resistance to WPBR in the pines where the two pests coincide and WPBR will affect forest recovery after MPB epidemics. MPB-WPBR interactions in a changing climate will affect the future trajectory of limber pine.
Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA
Extreme drought stress and associated bark beetle population growth contributed to an extensive tree mortality event in California, USA, resulting in more than 129 million trees dying between 2012 and 2016. Although drought is an important driver of this mortality event, past and ongoing fire suppression and the consequent densification of forests may have contributed. In some areas, land management agencies have worked to reduce stand density through mechanical treatments and prescribed fire to restore forests to less dense, more open conditions that are presumably more resilient to disturbance and changing climate. Here, we evaluate if stand structural conditions associated with treated (e.g., thinned and prescribed burned) forests in the Sierra Nevada of California conferred more resistance to the bark beetle epidemic and drought event of 2012–2016. We found that, compared to untreated units, treated units had lower stand densities, larger average tree diameters, and greater dominance of pines (Pinus), the historically dominant trees. For all tree species studied, mortality was substantially greater in climatically drier areas (i.e., lower elevations and latitudes). Both pine species studied (ponderosa pine [Pinus ponderosa] and sugar pine [Pinus lambertiana]) had greater mortality in areas where their diameters were larger, suggesting a size preference for their insect mortality agents. For ponderosa pine, the tree species experiencing greatest mortality, individual-tree mortality probability (for a given tree diameter) was significantly lower in treated stands. Ponderosa pine mortality was also positively related to density of medium- to large-sized conspecific trees, especially in areas with lower precipitation, suggesting that abundance of nearby host trees for insect mortality agents was an important determinant of pine mortality. Mortality of incense cedar (Calocedrus decurrens) and white fir (Abies concolor) was positively associated with basal area, suggesting sensitivity to competition during drought, but overall mortality was lower, likely because the most prevalent and effective mortality agents (the bark beetles Dendroctonus brevicomis and D. ponderosae) are associated specifically with pine species within our study region. Our findings suggest that forest thinning treatments are effective in reducing drought-related tree mortality in forests, and they underscore the important interaction between water and forest density in mediating bark beetle-caused mortality.
Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects
Climatic changes are predicted to significantly affect the frequency and severity of disturbances that shape forest ecosystems. We provide a synthesis of climate change effects on native bark beetles, important mortality agents of conifers in western North America. Because of differences in temperature-dependent life-history strategies, including cold-induced mortality and developmental timing, responses to warming will differ among and within bark beetle species. The success of bark beetle populations will also be influenced indirectly by the effects of climate on community associates and host-tree vigor, although little information is available to quantify these relationships. We used available population models and climate forecasts to explore the responses of two eruptive bark beetle species. Based on projected warming, increases in thermal regimes conducive to population success are predicted for Dendroctonus rufipennis (Kirby) and Dendroctonus ponderosae Hopkins, although there is considerable spatial and temporal variability. These predictions from population models suggest a movement of temperature suitability to higher latitudes and elevations and identify regions with a high potential for bark beetle outbreaks and associated tree mortality in the coming century.
Changes in soil fungal community composition depend on functional group and forest disturbance type
• Disturbances have altered community dynamics in boreal forests with unknown consequences for belowground ecological processes. Soil fungi are particularly sensitive to such disturbances; however, the individual response of fungal guilds to different disturbance types is poorly understood. • Here, we profiled soil fungal communities in lodgepole pine forests following a bark beetle outbreak, wildfire, clear-cut logging, and salvage-logging. Using Illumina MiSeq to sequence ITS1 and SSU rDNA, we characterized communities of ectomycorrhizal, arbuscular mycorrhizal, saprotrophic, and pathogenic fungi in sites representing each disturbance type paired with intact forests. We also quantified soil fungal biomass by measuring ergosterol. • Abiotic disturbances changed the community composition of ectomycorrhizal fungi and shifted the dominance from ectomycorrhizal to saprotrophic fungi compared to intact forests. The disruption of the soil organic layer with disturbances correlated with the decline of ectomycorrhizal and the increase of arbuscular mycorrhizal fungi. Wildfire changed the community composition of pathogenic fungi but did not affect their proportion and diversity. Fungal biomass declined with disturbances that disrupted the forest floor. • Our results suggest that the disruption of the forest floor with disturbances, and the changes in C and nutrient dynamics it may promote, structure the fungal community with implications for fungal biomass–C.