Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
96 result(s) for "Dental Sac - metabolism"
Sort by:
Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption
Formation of functional skeletal tissues requires highly organized steps of mesenchymal progenitor cell differentiation. The dental follicle (DF) surrounding the developing tooth harbors mesenchymal progenitor cells for various differentiated cells constituting the tooth root–bone interface and coordinates tooth eruption in a manner dependent on signaling by parathyroid hormone-related peptide (PTHrP) and the PTH/PTHrP receptor (PPR). However, the identity of mesenchymal progenitor cells in the DF and how they are regulated by PTHrP-PPR signaling remain unknown. Here, we show that the PTHrP-PPR autocrine signal maintains physiological cell fates of DF mesenchymal progenitor cells to establish the functional periodontal attachment apparatus and orchestrates tooth eruption. A single-cell RNA-seq analysis revealed cellular heterogeneity of PTHrP⁺ cells, wherein PTHrP⁺ DF subpopulations abundantly express PPR. Cell lineage analysis using tamoxifen-inducible PTHrP-creER mice revealed that PTHrP⁺ DF cells differentiate into cementoblasts on the acellular cementum, periodontal ligament cells, and alveolar cryptal bone osteoblasts during tooth root formation. PPR deficiency induced a cell fate shift of PTHrP⁺ DF mesenchymal progenitor cells to nonphysiological cementoblast-like cells precociously forming the cellular cementum on the root surface associated with up-regulation of Mef2c and matrix proteins, resulting in loss of the proper periodontal attachment apparatus and primary failure of tooth eruption, closely resembling human genetic conditions caused by PPR mutations. These findings reveal a unique mechanism whereby proper cell fates of mesenchymal progenitor cells are tightly maintained by an autocrine system mediated by PTHrP-PPR signaling to achieve functional formation of skeletal tissues.
Organoids from human tooth showing epithelial stemness phenotype and differentiation potential
Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue’s epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF’s epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-β (TGFβ) and abrogated by TGFβ receptor inhibition, thereby reproducing TGFβ's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFβ receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.
Lipopolysaccharide-Preconditioned Dental Follicle Stem Cells Derived Small Extracellular Vesicles Treating Periodontitis via Reactive Oxygen Species/Mitogen-Activated Protein Kinase Signaling-Mediated Antioxidant Effect
Lipopolysaccharide (LPS) pretreatment can enhance the therapeutic effect of dental follicle stem cells-derived small extracellular vesicles (DFC-sEV) for periodontitis, and this study aimed to investigate the underlying mechanisms and clinical application Of LPS-preconditioned DFC-sEV in periodontitis. The protein spectrum of DFC-sEV before and after LPS pretreatment was determined by liquid chromatography-tandem mass spectrometry and bioinformatic analysis. Their effects on inflammatory periodontal ligament stem cells (PDLSCs) and macrophages were investigated for cell proliferation, migration, type 2 macrophage (M2) polarization, and intracellular reactive oxygen species (ROS) levels separately. In addition, the regulation of ROS/Jun amino-terminal kinases (JNK) and ROS/extracellular signal-related kinases (ERK) signaling by LPS-preconditioned DFC-sEV was also studied to reveal the antioxidant mechanism. In vivo, two kinds of DFC-sEV loaded with 0.2% hyaluronic acid (HA) gel were applied for canine periodontitis to evaluate the therapeutic potential. The proteomic analysis showed that thirty-eight proteins were differentially expressed in LPS-preconditioned DFC-sEV, and interestingly, the highly expressed proteins were mainly involved in antioxidant and enzyme-regulating activities. In addition to promoting PDLSCs and macrophage proliferation, LPS-preconditioned DFC-sEV inhibited intracellular ROS as an antioxidant. It reduced the RANKL/OPG ratio of PDLSCs by inhibiting ROS/JNK signaling under inflammatory conditions and promoted macrophages to polarize toward the M2 phenotype via ROS/ERK signaling. Furthermore, LPS-preconditioned DFC-sEV loaded with the HA injectable system could sustainably release sEV and enhance the therapeutic efficacy for periodontitis in canines. LPS-preconditioned DFC-sEV could be effectively used as an auxiliary method for periodontitis treatment via antioxidant effects in a subgingival environment, and loading it with HA is feasible and effective for clinical applications.
A Hedgehog–Foxf axis coordinates dental follicle-derived alveolar bone formation
The alveolar bone is a specialized mineralized structure supporting the lifelong functionality of the tooth in mastication. The alveolar bone develops from the dental follicle (DF) during tooth root formation due to deliberate epithelial–mesenchymal interactions. However, how DF progenitor cell fates are regulated toward alveolar bone osteoblasts remains unknown. We find that Hedgehog signaling activities are transiently activated during the onset of tooth root formation and alveolar bone formation. Parathyroid hormone-related protein (PTHrP)-expressing DF cells are highly responsive to Hedgehog signaling, yet constitutive Hedgehog activation using Pthrp-creER and Ptch1 -floxed alleles potently suppresses alveolar osteoblast and ligament differentiation of PTHrP + DF cells, resulting in striking susceptibility to alveolar bone loss. Concomitant inactivation of Hedgehog-target Foxf1 factor in Hedgehog-activated PTHrP + DF cells partially rescued alveolar bone defects. Therefore, the Hedgehog–Foxf pathway needs to be suppressed to drive alveolar bone osteoblast fates of PTHrP + DF cells, unraveling a unique tooth-specific mechanism of bone formation requiring deliberate on-off regulations of Hedgehog signaling. The alveolar bone supports the tooth’s lifelong functionality. Here, the authors identify a tooth-specific mechanism of bone formation in which the Hedgehog–Foxf pathway regulates the alveolar bone osteoblast fates of DF progenitor cells.
Soluble silica stimulates osteogenic differentiation and gap junction communication in human dental follicle cells
Several studies have indicated that dietary silicon (Si) is beneficial for bone homeostasis and skeletal health. Furthermore, Si-containing bioactive glass biomaterials have positive effects on bone regeneration when used for repair of bone defects. Si has been demonstrated to stimulate osteoblast differentiation and bone mineralisation in vitro . However, the mechanisms underlying these effects of Si are not well understood. The aim of the present study was to investigate the effects of soluble Si on osteogenic differentiation and connexin 43 (CX43) gap junction communication in cultured pluripotent cells from human dental follicles (hDFC). Neutral Red uptake assay demonstrated that 25 μg/ml of Si significantly stimulated hDFC cell proliferation. Dosages of Si above 100 μg/ml decreased cell proliferation. Alizarin Red staining showed that osteogenic induction medium (OIM) by itself and in combination with Si (25 μg/ml) significantly increased mineralisation in hDFC cultures, although Si alone had no such effect. The expression of osteoblast-related markers in hDFC was analysed with RT-qPCR. OSX, RUNX2, BMP2, ALP, OCN, BSP and CX43 genes were expressed in hDFC cultured for 1, 7, 14 and 21 days. Expression levels of BMP-2 and BSP were significantly upregulated by OIM and Si (25 μg/ml) and were also induced by Si alone. Notably, the expression levels of OCN and CX43 on Day 21 were significantly increased only in the Si group. Flow cytometric measurements revealed that Si (50 μg/ml) significantly increased CX43 protein expression and gap junction communication in hDFC. Next-generation sequencing (NGS) and bioinformatics processing were used for the identification of differentially regulated genes and pathways. The influence of OIM over the cell differentiation profile was more prominent than the influence of Si alone. However, Si in combination with OIM increased the magnitude of expression (up or down) of the differentially regulated genes. The gene for cartilage oligomeric matrix protein (COMP) was the most significantly upregulated. Genes for the regulator of G protein signalling 4 (RGS4), regulator of G protein signalling 2 (RGS2), and matrix metalloproteinases (MMPs) 1, 8, and 10 were also strongly upregulated. Our findings reveal that soluble Si stimulates Cx43 gap junction communication in hDFC and induces gene expression patterns associated with osteogenic differentiation. Taken together, the results support the conclusion that Si is beneficial for bone health.
Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area.
Localization of α-smooth muscle actin in osteoblast differentiation during periodontal development
α-Smooth muscle actin (α-SMA) is an actin isoform commonly found within vascular smooth muscle cells. Moreover, α-SMA-positive cells are localized in the dental follicle (DF). DF is derived from alveolar bone (AB), cementum, and periodontal ligament (PDL). Therefore, α-SMA-positive cells in the periodontal tissue are speculated to be a marker for mesenchymal stem cells during tooth development. In particular, the mechanism of osteoblast differentiation is not clear. This study demonstrated the fate of α-SMA-positive cells around the tooth germ immunohistochemically. First, α-SMA- and Runx2-positive localization at embryonic days (E) 13, E14, postnatal days (P) 9, and P15 was demonstrated. α-SMA- and Runx2-positive cells were detected in the upper part of the DF at P1. At P9 and P15, α-SMA-positive cells in the PDL were detected in the upper and lower parts. The positive reaction of Runx2 was also localized in the PDL. Then, the distribution of α-SMA-positive cell progeny at P9 and P15 were clarified using α-SMA-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (α-SMA/tomato) mice. It has known that Runx2-positive cells differentiate into osteoblasts. In this study, some Runx2 and α-SMA-positive cells were localized in the DF and PDL. The lineage-tracing analysis demonstrated that the α-SMA/tomato-positive cells expressing Runx2 or Osterix were detected on the AB surface at P15. α-SMA/tomato-positive cells expressing type I collagen were found in the AB matrix. These results indicate that the progeny of the α-SMA-positive cells in the DF could differentiate into osteogenic cells. In conclusion, α-SMA could be a potential marker of progenitor cells that differentiate into osteoblasts. Graphical Abstract
Assessment of Protein Immunoexpression Associated with Tumor Proliferation and Invasion in Histological Subtypes of Unicystic and Conventional Ameloblastoma
The aim of this study was to verify whether the expression of proteins related to the formation of invadopodia, MT1-MMP, cortactin, Tks-4 and Tks-5 is associated with the degree of tumor invasiveness of different types of unicystic ameloblastomas. An immunohistochemical study was performed on 29 unicystic ameloblastoma (UA) samples, 9 conventional ameloblastoma (CAM) samples and 9 dental follicle (DF) samples. The potential for tumor invasiveness was assessed based on the immunoexpression of the following invadopodia-forming proteins: MT1-MMP, cortactin, Tks-4 and Tks5. Mural unicystic ameloblastoma (MUA) showed higher MT1-MMP, cortactin, Tks-4, and Tks-5 immunoexpression than luminal and intra-luminal types. Conventional ameloblastoma exhibited lower MT1-MMP, cortactin, and Tks-5 expression compared to MUA. MUA’s cystic capsule neoplastic cells had significantly higher MT1-MMP, cortactin, Tks-4, and Tks-5 expression than lumen cells. Dental follicles showed minimal expression. Neoplastic cells in the cystic capsule of mural unicystic ameloblastomas showed higher invadopodia-related protein expression than lumen and luminal/intraluminal cells, suggesting that proximity to the bone region influences the aggressive behavior of mural unicystic ameloblastomas more compared to other subtypes.
Differentiation of Stem Cells in the Dental Follicle
The dental follicle (DF) differentiates into the periodontal ligament. In addition, it may be the precursor of other cells of the periodontium, including osteoblasts and cementoblasts. We hypothesized that stem cells may be present in the DF and be capable of differentiating into cells of the periodontium. Stem cells were identified in the DF of the rat first mandibular molar by Hoechst staining, alkaline phosphatase staining, and expression of side-population stem cell markers. These cells were shown to be able to differentiate into osteoblasts/cementoblasts, adipocytes, and neurons. Treating the DF cell population with doxorubicin, followed by incubation in an adipogenesis medium, suggested that the adipocytes originated from stem cells. Thus, a possibly puripotent stem cell population is present in the rat DF.
Epigenetic Regulation of Dental Follicle Stem Cells in Odontogenic Regeneration
MicroRNAs (miRNAs) are short non‐coding RNAs essential for biological functions that control the process of translation of mRNA into protein. The discovery of miRNAs in mesenchymal stem cells (MSCs), especially in odontogenic tissues and dental follicles, has not been fully characterised. This study focused on characterising dental follicle stem cells (DFSCs) in terms of their ability to proliferate and differentiate into osteoblasts using qRT‐PCR (miR‐203, miR‐125 and miR‐21) and immunohistochemistry (OCT4 and CD133). Dental follicles are essential for tooth eruption as they envelop the enamel organ and dental papilla and control the development and breakdown of the alveolar bone. Dental follicle progenitor cells (DFPCs) are stem cells located in dental follicles that differentiate into several cell types that are essential for tooth development and eruption. We observed that miR‐125 was upregulated in fibromyxoid and myxoid tissues during odonto/osteogenic differentiation of hDFPCs (fold change values, respectively, 1.75 ± 0.98 and 2.17 ± 1.03). miR‐203 and miR‐21 significantly downregulated odonto/osteogenic differentiation in myxoid, fibromyxoid and fibroid tissues (fold change values, respectively: miR‐203: 0.57 ± 0.25, 0.38 ± 0.11, 0.21 ± 0.18; miR‐21: 0.21 ± 0.14, 0.21 ± 0.13, 0.082 ± 0.14). Ultimately, utilising miRNA signatures in humans as a predictive tool will help us understand the molecular processes involved in DFSCs.