Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
502,043 result(s) for "Design engineering"
Sort by:
Introduction to optimum design
Optimization is a mathematical tool developed in the early 1960's used to find the most efficient and feasible solutions to an engineering problem.It can be used to find ideal shapes and physical configurations, ideal structural designs, maximum energy efficiency, and many other desired goals of engineering.This book is intended for use.
Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
This study proposes a novel population-based metaheuristic algorithm called the Gazelle Optimization Algorithm (GOA), inspired by the gazelles’ survival ability in their predator-dominated environment. Every day, the gazelle knows that if it does not outrun and outmaneuver its predators, it becomes meat for the day, and to survive, the gazelles have to escape from their predators consistently. This information is vital to proposing a new metaheuristic algorithm that uses the gazelle’s survival abilities to solve real-world optimization problems. The exploitation phase of the algorithm simulates the gazelles grazing peacefully in the absence of the predator or while the predator is stalking it. The GOA goes into the exploration phase once a predator is spotted. The exploration phase consists of the gazelle outrunning and outmaneuvering the predator to a safe haven. These two phases are iteratively repeated, subject to the termination criteria, and finding optimal solutions to the optimization problems. The robustness and efficiency of the developed algorithm as an optimization tool were tested using benchmark optimization test functions and selected engineering design problems (fifteen classical, ten composited functions, and four mechanical engineering design problems). The results of the GOA are compared with nine other state-of-the-art algorithms. The simulation results obtained confirm the superiority and competitiveness of the GOA algorithm over nine state-of-the-art algorithms available in the literature. Also, the standard statistical analysis test carried out on the results further confirmed the ability of GOA to find solutions to the selected optimization problems. It also showed that GOA performed better or, in some cases, was very competitive with some state-of-the-art algorithms. Also, the results show that GOA is a potent tool for optimization that can be adapted to solve problems in different optimization domains.
A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
Metamodeling is becoming a rather popular means to approximate the expensive simulations in today’s complex engineering design problems since accurate metamodels can bring in a lot of benefits. The metamodel accuracy, however, heavily depends on the locations of the observed points. Adaptive sampling, as its name suggests, places more points in regions of interest by learning the information from previous data and metamodels. Consequently, compared to traditional space-filling sampling approaches, adaptive sampling has great potential to build more accurate metamodels with fewer points (simulations), thereby gaining increasing attention and interest by both practitioners and academicians in various fields. Noticing that there is a lack of reviews on adaptive sampling for global metamodeling in the literature, which is needed, this article categorizes, reviews, and analyzes the state-of-the-art single−/multi-response adaptive sampling approaches for global metamodeling in support of simulation-based engineering design. In addition, we also review and discuss some important issues that affect the success of an adaptive sampling approach as well as providing brief remarks on adaptive sampling for other purposes. Last, challenges and future research directions are provided and discussed.
Smart design engineering: a literature review of the impact of the 4th industrial revolution on product design and development
Industrial revolutions (IRs) are mostly associated with how transformations regarding the operations of an enterprise affect said enterprise’s manufacturing systems. However, the impact of these transformations exceeds the production systems themselves; rather, they affect the entire value chain, from the product design and development process (PDDP) through manufacturing and supply-chain management to marketing and disposal. As the new PDDP to a large extent defines the value chain for a company, the challenge lies in ensuring that the designed product will help the company fully benefit from the IRs. By analysing the 4th IR, the authors reveal that few publications shed light on this aspect. Consequently, the purpose of this study is to establish features and properties that will shape the PDDP throughout the 4th IR and into a smart design engineering. To accomplish this, the authors conduct a systematic review of the literature, which provides ten findings. These findings are then analysed by 11 specialists both from academia and the industry, and the findings’ relations to the 4th IR and their impact on the product development process is discussed. By establishing these findings, this paper provides a platform for the understanding of what could potentially shape smart design engineering and its design-related activities.
Managing computational complexity using surrogate models: a critical review
In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table 4 and Figs.  2 , 3 . MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube , fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature.