Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
12
result(s) for
"Developing Human Connectome Project"
Sort by:
The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants
by
O'Muircheartaigh, Jonathan
,
Baxter, Luke
,
Makropoulos, Antonios
in
Automation
,
Brain - diagnostic imaging
,
Brain - physiology
2020
•An automated and robust pipeline to minimally pre-process highly confounded neonatal fMRI data.•Includes integrated dynamic distortion and slice-to-volume motion correction.•A robust multimodal registration approach which includes custom neonatal templates.•Incorporates an automated and self-reporting QC framework to quantify data quality and identify issues for further inspection.•Data analysis of 538 infants imaged at 26–45 weeks post-menstrual age.
The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20–45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.
Journal Article
The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction
by
Teixeira, Rui Pedro A.G.
,
Rutherford, Mary A.
,
Makropoulos, Antonios
in
Brain
,
Brain - anatomy & histology
,
Cognitive ability
2018
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Journal Article
The Developing Human Connectome Project Neonatal Data Release
by
Kyriakopoulou, Vanessa
,
Baxter, Luke
,
Harper, Nicholas
in
Brain research
,
Cognition
,
Demography
2022
The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance images of fetal and/or neonatal brain from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, clinical, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.
Journal Article
Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants
2019
The infant brain is unlike the adult brain, with considerable differences in morphological, neurodynamic, and haemodynamic features. As the majority of current MRI analysis tools were designed for use in adults, a primary objective of the Developing Human Connectome Project (dHCP) is to develop optimised methodological pipelines for the analysis of neonatal structural, resting state, and diffusion MRI data. Here, in an independent neonatal dataset we have extended and optimised the dHCP fMRI preprocessing pipeline for the analysis of stimulus-response fMRI data. We describe and validate this extended dHCP fMRI preprocessing pipeline to analyse changes in brain activity evoked following an acute noxious stimulus applied to the infant's foot. We compare the results obtained from this extended dHCP pipeline to results obtained from a typical FSL FEAT-based analysis pipeline, evaluating the pipelines' outputs using a wide range of tests. We demonstrate that a substantial increase in spatial specificity and sensitivity to signal can be attained with a bespoke neonatal preprocessing pipeline through optimised motion and distortion correction, ICA-based denoising, and haemodynamic modelling. The improved sensitivity and specificity, made possible with this extended dHCP pipeline, will be paramount in making further progress in our understanding of the development of sensory processing in the infant brain.
•The dHCP fMRI preprocessing pipeline is generalizable to stimulus-evoked datasets.•Customised FIX denoising in infant fMRI data substantially improves data quality.•The dHCP pipeline greatly improves spatial specificity and sensitivity to signal.•Bespoke fMRI data analysis outperforms typical analytical methods for neonatal data.
Journal Article
Association between brain structural network efficiency at term-equivalent age and early development of cerebral palsy in very preterm infants
by
Kline, Julia E.
,
Harpster, Karen
,
Yuan, Weihong
in
Babies
,
Biomarkers
,
Biomarkers Abbreviations: very preterm (VPT)
2021
Very preterm infants (born at less than 32 weeks gestational age) are at high risk for serious motor impairments, including cerebral palsy (CP). The brain network changes that antecede the early development of CP in infants are not well characterized, and a better understanding may suggest new strategies for risk-stratification at term, which could lead to earlier access to therapies. Graph theoretical methods applied to diffusion MRI-derived brain connectomes may help quantify the organization and information transfer capacity of the preterm brain with greater nuance than overt structural or regional microstructural changes. Our aim was to shed light on the pathophysiology of early CP development, before the occurrence of early intervention therapies and other environmental confounders, to help identify the best early biomarkers of CP risk in VPT infants. In a cohort of 395 very preterm infants, we extracted cortical morphometrics and brain volumes from structural MRI and also applied graph theoretical methods to diffusion MRI connectomes, both acquired at term-equivalent age. Metrics from graph network analysis, especially global efficiency, strength values of the major sensorimotor tracts, and local efficiency of the motor nodes and novel non-motor regions were strongly inversely related to early CP diagnosis. These measures remained significantly associated with CP after correction for common risk factors of motor development, suggesting that metrics of brain network efficiency at term may be sensitive biomarkers for early CP detection. We demonstrate for the first time that in VPT infants, early CP diagnosis is anteceded by decreased brain network segregation in numerous nodes, including motor regions commonly-associated with CP and also novel regions that may partially explain the high rate of cognitive impairments concomitant with CP diagnosis. These advanced MRI biomarkers may help identify the highest risk infants by term-equivalent age, facilitating earlier interventions that are informed by early pathophysiological changes.
Journal Article
The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development
The human brain undergoes extensive and dynamic growth during the first years of life. The UNC/UMN Baby Connectome Project (BCP), one of the Lifespan Connectome Projects funded by NIH, is an ongoing study jointly conducted by investigators at the University of North Carolina at Chapel Hill and the University of Minnesota. The primary objective of the BCP is to characterize brain and behavioral development in typically developing infants across the first 5 years of life. The ultimate goals are to chart emerging patterns of structural and functional connectivity during this period, map brain-behavior associations, and establish a foundation from which to further explore trajectories of health and disease. To accomplish these goals, we are combining state of the art MRI acquisition and analysis techniques, including high-resolution structural MRI (T1-and T2-weighted images), diffusion imaging (dMRI), and resting state functional connectivity MRI (rfMRI). While the overall design of the BCP largely is built on the protocol developed by the Lifespan Human Connectome Project (HCP), given the unique age range of the BCP cohort, additional optimization of imaging parameters and consideration of an age appropriate battery of behavioral assessments were needed. Here we provide the overall study protocol, including approaches for subject recruitment, strategies for imaging typically developing children 0–5 years of age without sedation, imaging protocol and optimization, a description of the battery of behavioral assessments, and QA/QC procedures. Combining HCP inspired neuroimaging data with well-established behavioral assessments during this time period will yield an invaluable resource for the scientific community.
•Complete description of the UNC/UMN Baby Connectome Project (BCP) protocol.•The importanc'e of dense longitudinal sampling.•Protocol optimization and preliminary results of optimized imaging protocol.•BCP study data as a unique resource for the scientific community.
Journal Article
Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts
2019
Resting-state functional MRI (rs-fMRI) is one of the most prevalent brain functional imaging modalities. Previous rs-fMRI studies have mainly focused on adults and elderly subjects. Recently, infant rs-fMRI studies have become an area of active research. After a decade of gap filling studies, many facets of the brain functional development from early infancy to toddler has been uncovered. However, infant rs-fMRI is still in its infancy. The image analysis tools for neonates and young infants can be quite different from those for adults. From data analysis to result interpretation, more questions and issues have been raised, and new hypotheses have been formed. With the anticipated availability of unprecedented high-resolution rs-fMRI and dedicated analysis pipelines from the Baby Connectome Project (BCP), it is important now to revisit previous findings and hypotheses, discuss and comment existing issues and problems, and make a “to-do-list” for the future studies. This review article aims to comprehensively review a decade of the findings, unveiling hidden jewels of the fields of developmental neuroscience and neuroimage computing. Emphases will be given to early infancy, particularly the first few years of life. In this review, an end-to-end summary, from infant rs-fMRI experimental design to data processing, and from the development of individual functional systems to large-scale brain functional networks, is provided. A comprehensive summary of the rs-fMRI findings in developmental patterns is highlighted. Furthermore, an extensive summary of the neurodevelopmental disorders and the effects of other hazardous factors is provided. Finally, future research trends focusing on emerging dynamic functional connectivity and state-of-the-art functional connectome analysis are summarized. In next decade, early infant rs-fMRI and developmental connectome study could be one of the shining research topics.
[Display omitted]
•Comprehensive review of early brain developmental studies using rs-fMRI.•Outlining practical and end-to-end neonate/infant rs-fMRI pipelines.•Highlighting future research trends for early development studies.•Summarizing consistent findings in the literature regarding early brain developmental patterns.•Providing up-to-date neonate/infant (<5 years old) functional network literature review.
Journal Article
A common brain network among state, trait, and pathological anxiety from whole-brain functional connectivity
by
Soriano-Mas, Carles
,
Harrison, Ben J.
,
Takagi, Yu
in
Anxiety
,
Anxiety - physiopathology
,
Behavior disorders
2018
Anxiety is one of the most common mental states of humans. Although it drives us to avoid frightening situations and to achieve our goals, it may also impose significant suffering and burden if it becomes extreme. Because we experience anxiety in a variety of forms, previous studies investigated neural substrates of anxiety in a variety of ways. These studies revealed that individuals with high state, trait, or pathological anxiety showed altered neural substrates. However, no studies have directly investigated whether the different dimensions of anxiety share a common neural substrate, despite its theoretical and practical importance. Here, we investigated a brain network of anxiety shared by different dimensions of anxiety in a unified analytical framework using functional magnetic resonance imaging (fMRI). We analyzed different datasets in a single scale, which was defined by an anxiety-related brain network derived from whole brain. We first conducted the anxiety provocation task with healthy participants who tended to feel anxiety related to obsessive-compulsive disorder (OCD) in their daily life. We found a common state anxiety brain network across participants (1585 trials obtained from 10 participants). Then, using the resting-state fMRI in combination with the participants' behavioral trait anxiety scale scores (879 participants from the Human Connectome Project), we demonstrated that trait anxiety shared the same brain network as state anxiety. Furthermore, the brain network between common to state and trait anxiety could detect patients with OCD, which is characterized by pathological anxiety-driven behaviors (174 participants from multi-site datasets). Our findings provide direct evidence that different dimensions of anxiety have a substantial biological inter-relationship. Our results also provide a biologically defined dimension of anxiety, which may promote further investigation of various human characteristics, including psychiatric disorders, from the perspective of anxiety.
•Common brain networks among different dimensions of anxiety were investigated.•The state anxiety brain network was similarly represented across participants.•There was a common brain network for trait anxiety and state anxiety.•This common brain network was generalized to pathological anxiety.
Journal Article
Validation of diffusion MRI estimates of compartment size and volume fraction in a biomimetic brain phantom using a human MRI scanner with 300 mT/m maximum gradient strength
by
Huang, Susie Y.
,
Nummenmaa, Aapo
,
Witzel, Thomas
in
Anisotropy
,
AxCaliber
,
Biomimetics - methods
2018
Diffusion microstructural imaging techniques have attracted great interest in the last decade due to their ability to quantify axon diameter and volume fraction in healthy and diseased human white matter. The estimates of compartment size and volume fraction continue to be debated, in part due to the lack of a gold standard for validation and quality control. In this work, we validate diffusion MRI estimates of compartment size and volume fraction using a novel textile axon (“taxon”) phantom constructed from hollow polypropylene yarns with distinct intra- and extra-taxonal compartments to mimic white matter in the brain. We acquired a comprehensive set of diffusion MRI measurements in the phantom using multiple gradient directions, diffusion times and gradient strengths on a human MRI scanner equipped with maximum gradient strength (Gmax) of 300 mT/m. We obtained estimates of compartment size and restricted volume fraction through a straightforward extension of the AxCaliber/ActiveAx frameworks that enables estimation of mean compartment size in fiber bundles of arbitrary orientation. The voxel-wise taxon diameter estimates of 12.2 ± 0.9 μm were close to the manufactured inner diameter of 11.8 ± 1.2 μm with Gmax = 300 mT/m. The estimated restricted volume fraction demonstrated an expected decrease along the length of the fiber bundles in accordance with the known construction of the phantom. When Gmax was restricted to 80 mT/m, the taxon diameter was overestimated, and the estimates for taxon diameter and packing density showed greater uncertainty compared to data with Gmax = 300 mT/m. In conclusion, the compartment size and volume fraction estimates resulting from diffusion measurements on a human scanner were validated against ground truth in a phantom mimicking human white matter, providing confidence that this method can yield accurate estimates of parameters in simplified but realistic microstructural environments. Our work also demonstrates the importance of a biologically analogous phantom that can be applied to validate a variety of diffusion microstructural imaging methods in human scanners and be used for standardization of diffusion MRI protocols for neuroimaging research.
•A method for estimating compartment size/density using diffusion MRI is proposed.•A novel hollow fiber phantom is used for validation of size/density estimates.•A comprehensive diffusion dataset was acquired on CONNECTOM scanner with the phantom.•The proposed method can resolve 12um compartment size with 300 mT/m gradient strength.
Journal Article
State-unspecific patterns of whole-brain functional connectivity from resting and multiple task states predict stable individual traits
by
Tanaka, Saori C.
,
Hirayama, Jun-ichiro
,
Takagi, Yu
in
Adult
,
Artificial intelligence
,
Brain - diagnostic imaging
2019
An increasing number of functional magnetic resonance imaging (fMRI) studies have revealed potential neural substrates of individual differences in diverse types of brain function and dysfunction. Although most previous studies have inherently focused on state-specific characterizations of brain networks and their functions, several recent studies reported on the potential state-unspecific nature of functional brain networks, such as global similarities across different experimental conditions or states, including both task and resting states. However, no previous studies have carried out direct, systematic characterizations of state-unspecific brain networks, or their functional implications. Here, we quantitatively identified several modes of state-unspecific individual variations in whole-brain functional connectivity patterns, called “Common Neural Modes” (CNMs), from a large-scale fMRI database including eight task/resting states. Furthermore, we tested how CNMs accounted for variability in individual cognitive measures. The results revealed that three CNMs were robustly extracted under various dimensions of features used. Each of these CNMs was preferentially correlated with different aspects of representative cognitive measures, reflecting stable individual traits. Importantly, the association between CNMs and cognitive measures emerged from brain connectivity data alone (“unsupervised”), whereas previous related studies have explicitly used both connectivity and cognitive measures to build their prediction models (“supervised”). The three CNMs were also able to predict several life outcomes, including income and life satisfaction, and achieved the highest level of performance when combined with a conventional cognitive measure. Our findings highlight the importance of state-unspecific brain networks in characterizing fundamental individual variation.
•Identified the modes of inter-individual variability in whole-brain functional connectivity that are stable across different states.•These modes were identified in a fully data-driven manner using an unsupervised machine learning technique, without relying on any target cognitive measures.•These modes were correlated with representative cognitive measures as well as life outcomes.
Journal Article