Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
666 result(s) for "Diabetic Nephropathies - immunology"
Sort by:
Innate immunity in diabetic kidney disease
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein–kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.Increasing evidence suggests that inflammation contributes to the development and progression of diabetic kidney disease (DKD). Here, the authors discuss the mechanisms by which innate immune pathways might contribute to DKD as well as the therapeutic potential of targeting these pathways.
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Macrophage Phenotype and Fibrosis in Diabetic Nephropathy
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. The primary initiating mechanism in DN is hyperglycemia-induced vascular dysfunction, but its progression is due to different pathological mechanisms, including oxidative stress, inflammatory cells infiltration, inflammation and fibrosis. Macrophages (Mφ) accumulation in kidneys correlates strongly with serum creatinine, interstitial myofibroblast accumulation and interstitial fibrosis scores. However, whether or not Mφ polarization is involved in the progression of DN has not been adequately defined. The prevalence of the different phenotypes during the course of DN, the existence of hybrid phenotypes and the plasticity of these cells depending of the environment have led to inconclusive results. In the same sense the role of the different macrophage phenotype in fibrosis associated or not to DN warrants additional investigation into Mφ polarization and its role in fibrosis. Due to the association between fibrosis and the progressive decline of renal function in DN, and the role of the different phenotypes of Mφ in fibrosis, in this review we examine the role of macrophage phenotype control in DN and highlight the potential factors contributing to phenotype change and injury or repair in DN.
The role of Neuropilin-1 in COVID-19
Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.
Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment
Diabetic nephropathy (DN) is a major complication of diabetes and represents the leading cause of end-stage renal disease. Mesenchymal stem cell (MSC) treatment has been demonstrated to be effective in DN models by reducing albuminuria and attenuating glomerular injury; however, limited in-depth understanding of the underlying mechanism and a lack of clinical trials hinders its clinical use. Additionally, most of these experimental studies were conducted on the advanced stage of nephropathy, which is difficult to reverse and consequently showed limited therapeutic efficacy. We sought to evaluate whether early intervention by MSCs has the potential to prevent DN onset and progression as well as protect kidney function when intravenously administered to rats with diabetes. Diabetes was induced in adult male SD rats by streptozotocin (STZ) injection (55 mg/kg, i.p.). The diabetic rats were injected with or without bone marrow-derived MSCs (5×106 per rat), via tail vein at 2, 4, 5 and 7 weeks after diabetes onset. Fasting blood glucose (FBG), blood urea nitrogen (BUN) and serum creatinine (Scr) levels in serum samples and glycosuria (GLU), microalbumin (MAU), and albumin to creatinine ratio (ACR) in urine samples were determined. Renal pathology and immunohistochemistry (IHC) for CD68, MCP-1, fibronectin (FN), transforming growth factor-β (TGF-β) and pro-inflammatory cytokines were also performed. Expression levels of the above factors as well as interleukin-10 (IL-10), and epidermal growth factor (EGF) were assessed by qPCR and multiplex bead-based suspension array system, respectively. Additionally, MSC tracing in vivo was performed. Ex vivo, peritoneal macrophages were co-cultured with MSCs, and expression of inflammatory cytokines was detected as well. MSC treatment profoundly suppressed renal macrophage infiltration and inflammatory cytokine secretion in diabetic rats, resulting in prominently improved kidney histology, systemic homeostasis, and animal survival, although no significant effect on hyperglycemia was observed. Engrafted MSCs were primarily localized in deteriorated areas of the kidney and immune organs 48 h after infusion. MSC treatment upregulated serum anti-inflammatory cytokines IL-10 and EGF. Ex vivo, MSCs inhibited lipopolysaccharide (LPS)-stimulated rat peritoneal macrophage activation via the downregulation of inflammatory-related cytokines such as IL-6, MCP-1, tumor necrosis factor-α (TNF-α) and IL-1β. Our results demonstrated that early intervention with MSCs prevented renal injury via immune regulation in diabetic rats, which restored the homeostasis of the immune microenvironment, contributing to the prevention of kidney dysfunction and glomerulosclerosis.
Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy
Inflammation has a key role in the pathogenesis and progression of diabetic nephropathy; however, the pathways, ligands and receptors involved in this condition are complex and only partially understood. The authors of this Review discuss the molecular networks that are implicated in the development of diabetic nephropathy and describe how these pathways function in health and disease, as well as their importance in the identification and development of potential therapeutics. Many lines of evidence, ranging from in vitro experiments and pathological examinations to epidemiological studies, show that inflammation is a cardinal pathogenetic mechanism in diabetic nephropathy. Thus, modulation of inflammatory processes in the setting of diabetes mellitus is a matter of great interest for researchers today. The relationships between inflammation and the development and progression of diabetic nephropathy involve complex molecular networks and processes. This Review, therefore, focuses on key proinflammatory molecules and pathways implicated in the development and progression of diabetic nephropathy: the chemokines CCL2, CX3CL1 and CCL5 (also known as MCP-1, fractalkine and RANTES, respectively); the adhesion molecules intercellular adhesion molecule 1, vascular cell adhesion protein 1, endothelial cell-selective adhesion molecule, E-selectin and α-actinin 4; the transcription factor nuclear factor κB; and the inflammatory cytokines IL-1, IL-6, IL-18 and tumor necrosis factor. Advances in the understanding of the roles that these inflammatory pathways have in the context of diabetic nephropathy will facilitate the discovery of new therapeutic targets. In the next few years, promising new therapeutic strategies based on anti-inflammatory effects could be successfully translated into clinical treatments for diabetic complications, including diabetic nephropathy. Key Points A wide range of proinflammatory molecules and pathways participate in the pathophysiological spectrum of diabetic nephropathy, including proinflammatory cytokines, chemokines and their receptors, adhesion molecules and transcription factors Inflammatory mechanisms are important in the pathophysiology of diabetic nephropathy and explain how metabolic and hemodynamic abnormalities in patients with diabetes mellitus translate to functional and structural kidney injury IL-18 is strongly associated with diabetic nephropathy; levels of this proinflammatory cytokine might be useful as an early marker of renal dysfunction in patients with type 2 diabetes mellitus Abnormal C-C motif chemokine 2 signaling results in reorganization of the actin cytoskeleton and downregulation of nephrin, causing changes in podocyte structure and function that are associated with albuminuria Endothelial cell-selective adhesion molecule (ESAM) is linked to diabetic nephropathy: high blood levels of glucose decrease ESAM expression, causing tight junction expansion, decreased endothelial fenestration and albuminuria Inhibition of tumor necrosis factor using pentoxifylline improves markers of glomerular and tubulointerstitial injury in patients with diabetic nephropathy; ongoing randomized, controlled clinical trials are investigating the renoprotective effects of this agent
Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy
Diabetic nephropathy is a growing health concern with characteristic sterile inflammation. As the underlying mechanisms of this inflammation remain poorly defined, specific therapies targeting sterile inflammation in diabetic nephropathy are lacking. Intriguingly, an association of diabetic nephropathy with inflammasome activation has recently been shown, but the pathophysiological relevance of this finding remains unknown. Within glomeruli, inflammasome activation was detected in endothelial cells and podocytes in diabetic humans and mice and in glucose-stressed glomerular endothelial cells and podocytes in vitro. Abolishing Nlrp3 or caspase-1 expression in bone marrow–derived cells fails to protect mice against diabetic nephropathy. Conversely, Nlrp3-deficient mice are protected against diabetic nephropathy despite transplantation of wild-type bone marrow. Pharmacological IL-1R antagonism prevented or even reversed diabetic nephropathy in mice. Mitochondrial reactive oxygen species (ROS) activate the Nlrp3 inflammasome in glucose or advanced glycation end product stressed podocytes. Inhibition of mitochondrial ROS prevents glomerular inflammasome activation and nephropathy in diabetic mice. Thus, mitochondrial ROS and Nlrp3-inflammasome activation in non-myeloid-derived cells aggravate diabetic nephropathy. Targeting the inflammasome may be a potential therapeutic approach to diabetic nephropathy.
Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy
In this study, we aimed to investigate the associations between Sirt6, macrophages and diabetic nephropathy (DN). Immunohistochemical, western blot and RT-qPCR analyses were performed to detect the expression levels of Sirt6, the markers of podocytes and monocytes and related inflammatory factors in the tissues of rats with streptozocin-induced DN. A series of cell experiments in isolated culture or the co-culture of macrophages and podocytes were conducted to examine the effects of the overexpression of Sirt6 on macrophage transformation, podocyte apoptosis and associated genes, and analyses were performed using RT-qPCR, flow cytometry and western blot analysis, where appropriate. In the rat model of DN, injured podocytes were represented by the decreased protein expression levels of Nephrin and Sirt6, and by an increased Desmin expression. Additionally, the M1 phenotype transformation of macrophages was evidenced by the increased expression levels of CD86, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS), and by the decreased expression levels of CD206, Sirt6, interleukin (IL)-4 and IL-10. In vitro assays of macrophages and podocytes demonstrated that glucose promoted macrophage M1 transformation and podocyte apoptosis in a dose-dependent manner and attenuated Sirt6 expression. Macrophages transformed into the M2 phenotype following the overexpression of Sirt6 by the successful transfection of macrophages with a Sirt6 overexpression plasmid. Sirt6 was also overexpressed in podocytes. In a Transwell co-culture system, the overexpression of Sirt6 in macrophages (but not the overexpression of Sirt6 in podocytes) protected the podocytes from high-glucose-induced injury. However, the apoptosis of the podocytes overexpressing Sirt6 (induced by transfection with a Sirt6 overexpression plasmid) still increased when these podocytes were co-cultured with macrophages in high-glucose medium. These protective effects were evidenced by the inhibition of apoptosis, the upregulation of the expression levels of Bcl-2 and CD206, as well as by the decreased expression levels of Bax and CD86. On the whole, the findings of this study suggest that Sirt6 protects podocytes against injury in a mimicked diabetic kidney microenvironment by activating M2 macrophages, indicating that Sirt6 can act as an immune response regulatory factor in DN-associated renal inflammatory injury.
Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice With Type 2 Diabetes Mellitus
Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lep db/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80 + CD11b + CD86 + ) to anti-inflammatory M2 ones (F4/80 + CD11b + CD206 + ) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro , resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4 + T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4 + T cells while promoting their differentiation into CD4 + IL-4 + Th2 and CD4 + Foxp3 + Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4 + T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.
Innate immunity in diabetes and diabetic nephropathy
Key Points The innate immune system consists of several classes of pattern recognition receptors, including Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), which detect pathogen-associated and danger-associated molecular patterns and initiate an inflammatory response TLR2 and TLR4 are the predominant TLRs expressed on pancreatic β cells which trigger an inflammatory response that results in insulitis during type 1 diabetes mellitus TLR2 and TLR4 signalling, and activation of NLRP3 inflammasomes result in the production of various proinflammatory cytokines that can induce insulin resistance in type 2 diabetes mellitus (T2DM) and obesity Innate immune responses in T2DM and obesity are modulated by the status of the gut microbiota, autophagy, and adipokines TLR2, TLR4, NOD2, and NLRP3 inflammasome-mediated inflammation are involved in the perpetuation of inflammation in diabetic nephropathy The activation of TLRs and NLRs stimulates the expression of MCP-1, which is associated with the progression of diabetic nephropathy Pattern recognition receptors and danger-associated molecular patterns of the innate immune system contribute to the initiation of an inflammatory response in diabetes mellitus and diabetic nephropathy. In this Review, Jun Wada and Hirofumi Makino discuss how these components of the innate immune system can lead to insulin resistance, diabetes mellitus, and renal failure and describe signalling mediators and pathways that could be targeted for treatment. The innate immune system includes several classes of pattern recognition receptors (PRRs), including membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). These receptors detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in the extracellular and intracellular space. Intracellular NLRs constitute inflammasomes, which activate and release caspase-1, IL-1β, and IL-18 thereby initiating an inflammatory response. Systemic and local low-grade inflammation and release of proinflammatory cytokines are implicated in the development and progression of diabetes mellitus and diabetic nephropathy. TLR2, TLR4, and the NLRP3 inflammasome can induce the production of various proinflammatory cytokines and are critically involved in inflammatory responses in pancreatic islets, and in adipose, liver and kidney tissues. This Review describes how innate immune system-driven inflammatory processes can lead to apoptosis, tissue fibrosis, and organ dysfunction resulting in insulin resistance, impaired insulin secretion, and renal failure. We propose that careful targeting of TLR2, TLR4, and NLRP3 signalling pathways could be beneficial for the treatment of diabetes mellitus and diabetic nephropathy.