Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
497 result(s) for "Diatomaceous Earth - chemistry"
Sort by:
Diatomaceous Earth for Arthropod Pest Control: Back to the Future
Nowadays, we are tackling various issues related to the overuse of synthetic insecticides. Growing concerns about biodiversity, animal and human welfare, and food security are pushing agriculture toward a more sustainable approach, and research is moving in this direction, looking for environmentally friendly alternatives to be adopted in Integrated Pest Management (IPM) protocols. In this regard, inert dusts, especially diatomaceous earths (DEs), hold a significant promise to prevent and control a wide range of arthropod pests. DEs are a type of naturally occurring soft siliceous sedimentary rock, consisting of the fossilized exoskeleton of unicellular algae, which are called diatoms. Mainly adopted for the control of stored product pests, DEs have found also their use against some household insects living in a dry environment, such as bed bugs, or insects of agricultural interest. In this article, we reported a comprehensive review of the use of DEs against different arthropod pest taxa, such as Acarina, Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, Ixodida, Lepidoptera, when applied either alone or in combination with other techniques. The mechanisms of action of DEs, their real-world applications, and challenges related to their adoption in IPM programs are critically reported.
Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete
Abstract Crack repair is crucial since cracks are the main cause for the decreased service life of concrete structures. An original and promising way to repair cracks is to pre-incorporate healing agents inside the concrete matrix to heal cracks the moment they appear. Thus, the concrete obtains self-healing properties. The goal of our research is to apply bacterially precipitated CaCO3 to heal cracks in concrete since the microbial calcium carbonate is more compatible with the concrete matrix and more environmentally friendly relative to the normally used polymeric materials. Diatomaceous earth (DE) was used in this study to protect bacteria from the high-pH environment of concrete. The experimental results showed that DE had a very good protective effect for bacteria. DE immobilized bacteria had much higher ureolytic activity (12–17 g/l urea was decomposed within 3 days) than that of un-immobilized bacteria (less than 1 g/l urea was decomposed within the same time span) in cement slurry. The optimal concentration of DE for immobilization was 60% (w/v, weight of DE/volume of bacterial suspension). Self-healing in cracked specimens was visualized under light microscopy. The images showed that cracks with a width ranging from 0.15 to 0.17 mm in the specimens containing DE immobilized bacteria were completely filled by the precipitation. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize the precipitation around the crack wall, which was confirmed to be calcium carbonate. The result from a capillary water absorption test showed that the specimens with DE immobilized bacteria had the lowest water absorption (30% of the reference ones), which indicated that the precipitation inside the cracks increased the water penetration resistance of the cracked specimens.
Development of Palladium and Magnetite-Coated Diatomite as a Magnetizable Catalyst for Hydrogenation of Benzophenone
A naturally derived silicate, diatomaceous earth has been endowed with magnetic properties by depositing magnetite nanoparticles on its surface. Palladium crystallites were created on the resulting magnetizable catalyst support. The support provided high specific surface area with high porosity which were ideal for the binding of both the magnetic particles and the palladium. The catalyst was successfully tested in the hydrogenation of benzophenone in three different solvents (methanol, ethanol, and isopropanol). Significant differences in catalytic activity were observed, allowing selective production of benzhydrol (BH) or diphenylmethane (DPM) by a simple solvent change. Beside the excellent selectivity, the featured catalyst also provided an easy and fast method for catalyst recoverability using a simple magnet.
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%.
Amine-Modified Diatomaceous Earth Syringe Platform (DeSEI) for Efficient and Cost-Effective EV Isolation
Conventional methods for isolating extracellular vesicles (EVs) are often limited by long processing times, a low purity, and a reliance on specialized equipment. To overcome these challenges, we developed the DeSEI (amine-functionalized Diatomaceous earth-based Syringe platform for EV Isolation), a novel platform employing low-cost, amine-functionalized diatomaceous earth (ADe) within a simple syringe–filter system. The capture mechanism leverages the electrostatic interaction between the positively charged ADe and the negatively charged EV surface, enabling a rapid and efficient isolation. The optimized 30 min protocol yields intact EVs with morphology, size, and protein markers comparable to those from ultracentrifugation, ensuring minimal cellular contamination. Notably, DeSEI exhibited a nearly 60-fold higher recovery efficiency of EV-derived miRNA compared to ultracentrifugation. The platform further proved its versatility with a rapid one-step miRNA extraction protocol and a user-friendly cartridge format. The direct miRNA extraction capability is particularly advantageous for a streamlined biomarker analysis, while the cartridge design illustrates a clear pathway toward developing point-of-care diagnostic tools. The DeSEI offers a promising alternative to existing methods for EV-based research by providing a combination of speed, simplicity, and procedural flexibility that does not require specialized equipment.
In vitro assessment of fracture resistance of premolar teeth restored with diatomite zirconia versus barium glass filled resin composite
Evaluate the fracture resistance of premolar teeth with MOD cavities restored with Diatomite Zirconia/Silica Filled Resin Composite Versus Barium Glass/Yetterbium Fluoride Filled resin composite systems. A 40 maxillary premolar were divided equally into four main groups (10 teeth each); a positive control group of unprepared teeth and a negative control group with prepared and unrestored MOD cavity. While the two other restored groups in which teeth with prepared MOD cavities were restored either with Diatomite Zirconia/Silica Filled Resin Composite (Zircon Fill composite, ZF) or Barium Glass/Yetterbium Fluoride Filled resin composite (Neo Spectra Composite, NS). A standardized MOD cavity was prepared in premolar teeth. Teeth were restored according to the corresponding group, and then exposed to thermocycling prior fracture resistance tested. Data collected from fracture resistance and failure mode were collected and statistically analyzed with ANOVA test. The significance level was set at p  < 0.05 within all tests. There was a significant difference between different tested groups, with prepared teeth having significantly lower fracture resistance than sound teeth and samples restored with both restorative materials ( p  < 0.001). For Neo Spectra, most samples had mixed while Zirconfil were either had adhesive or cohesive failures with no statistically significant difference ( p  = 0.077). All the associations between fracture resistance and failure modes were not statistically significant. The two tested resin composites exhibited similar fracture resistance to each other and to sound teeth. Diatomite Zirconia/Silica Filled Resin Composite versus Barium Glass/Yetterbium Fluoride Filled resin composite systems were able to reinforce and restore the strength properties of the tooth.
La 2 O 3 -modified MCM-41 for efficient phosphate removal synthesized using natural diatomite as precursor
In this study, an ordered mesoporous silica modified with lanthanum oxide was synthesized using diatomite as silica source and applied for adsorption of phosphate from aqueous solution. By taking cost-effectiveness for practical application into consideration, the adsorbent with a theoretical La/SiO molar ratio of 0.2 (La M41) possessed a promising performance. In the batch adsorption tests, the adsorbents with La O loading possessed markedly enhanced adsorption capacities. Phosphate uptake by La M41 was pH-dependent with the highest sorption capacities observed over a pH range of 3.0-6.0. Coexistent anions displayed an adverse effect on phosphate adsorption following the order of CO   > F   > NO > Cl > SO . In the kinetic study, phosphate adsorption onto La M41 followed the pseudo-second-order equation better than the pseudo-first-order, suggesting chemisorption. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate of up to 263.16 mg/g at 298 K. In a real treated wastewater effluent with phosphate concentration of 2.5 mg P/L, La M41 efficiently reduced the phosphate concentration to 28 µg P/L.
Clay Composites for Thermal Energy Storage: A Review
The development of novel materials and approaches for effective energy consumption and the employment of renewable energy sources is one of the current trends in modern material science. With this respect, the number of researches is focused on the effective harvesting and storage of solar energy for various applications. Phase change materials (PCMs) are known to be able to store thermal energy of the sunlight due to adsorption and release of latent heat through reversible phase transitions. Therefore, PCMs are promising as functional additives to construction materials and paints for advanced thermoregulation in building and industry. However, bare PCMs have limited practical applications. Organic PCMs like paraffins suffer from material leakage when undergoing in a liquid state while inorganic ones like salt hydrates lack long-term stability after multiple phase transitions. To avoid this, the loading of PCMs in porous matrices are intensively studied along with the thermal properties of the resulted composites. The loading of PCMs in microcontainers of natural porous or layered clay materials appears as a simple and cost-effective method of encapsulation significantly improving the shape and cyclic stability of PCMs. Additionally, the inclusion of functional clay containers into construction materials allows for improving their mechanical and flame-retardant properties. This article summarizes the recent progress in the preparation of composites based on PCM-loaded clay microcontainers along with their future perspectives as functional additives in thermo-regulating materials.
Extraction of Bioactive Compounds Using Supercritical Carbon Dioxide
Microalgae Dunaliella salina contains useful molecules such as β-carotene and fatty acids (FAs), which are considered high value-added compounds. To extract these molecules, supercritical carbon dioxide was used at different operative conditions. The effects of mechanical pre-treatment (grinding speed at 0–600 rpm; pre-treatment time of 2.5–7.5 min) and operating parameters for extraction, such as biomass loading (2.45 and 7.53 g), pressure (100–550 bars), temperature (50–75 °C) and CO2 flow rate (7.24 and 14.48 g/min) by varying the extraction times (30–110 min) were evaluated. Results showed that the maximum cumulative recovery (25.48%) of β-carotene was achieved at 400 bars and 65 °C with a CO2 flow rate of 14.48 g/min, while the highest purity for stage (55.40%) was attained at 550 bars and 65 °C with a CO2 flow rate of 14.48 g/min. The maximum recovery of FAs, equal to 8.47 mg/g, was achieved at 550 bars and 75 °C with a CO2 flow rate of 14.48 g/min. Moreover, the lowest biomass loading (2.45 g) and the first extraction cycle (30 min) allowed the maximum extraction of β-carotene and FAs.
Phenanthrene sorption studies on coffee waste– and diatomaceous earth–based adsorbents, and adsorbent regeneration with cold atmospheric plasma
Phenanthrene (PHE) is a polycyclic aromatic hydrocarbon categorized as a high priority organic pollutant being toxic for the ecosystem and human health, and its sorption on natural organic or inorganic substances seems a well-promising method for its removal from water streams. The goals of the present work are (i) to assess the capacity of low-cost adsorbents fabricated by treating coffee wastes and diatomaceous earth to remove PHE from water; (ii) to elucidate the role of the pore structure on PHE sorption dynamics; and (iii) to assess the potential to regenerate adsorbents loaded with PHE, by using the novel technology of cold atmospheric plasma (CAP). Diatomaceous earth (DE) and DE pre-treated with sodium hydroxide (NaOH) or phosphoric acid (H 3 PO 4 ) were chosen as inorganic adsorbents. Coffee waste (CW) and activated carbons (AC) produced from its pyrolysis at 800 °C (CWAC), either untreated (CWAC-800) or pre-treated with NaOH (CWAC-NaOH-800) and H 3 PO 4 (CWAC-H 3 PO 4 -800), were chosen as organic adsorbents. The adsorbents were characterized with nitrogen adsorption–desorption isotherms, attenuated total reflectance-Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and mercury intrusion porosimetry. Based on the PHE sorption capacity and pore structure/surface characteristics, the CWAC-NaOH-800 was chosen as the most efficient adsorbent for further equilibrium and kinetic sorption studies. The multi-compartment model was used to describe the PHE sorption dynamics in CWAC-NaOH-800 by accounting for the pore/surface diffusion and instantaneous sorption. The CWAC-NaOH-800 exhibited remarkable values for (i) the specific surface area ( S BET  = 676.5 m 2 /g) and meso- and micro-pore volume determined by nitrogen sorption ( V LN2  = 0.415 cm 3 /g); (ii) the macro- and meso-pore volume determined by mercury intrusion porosimetry ( V MIP  = 3.134 cm 3 /g); and (iii) the maximum PHE sorption capacity ( q max  = 142 mg/g). The percentage of adsorbent recovery after its regeneration with CAP was found to be ~ 35%. From the simulation of sorption dynamics, it was found that at early times, the sorption kinetics is governed by the film diffusion towards the external surface of grains, but at late times, most of the adsorbed mass is transferred primarily to meso-/macro-pores via diffusion, and secondarily to micro-porosity via surface diffusion. Based on the adsorbent characteristics, effect of pH on sorption efficiency, and numerical analysis of sorption dynamics, it was concluded that probably the dominant adsorption mechanism is the π-π interactions between hydrophobic PHE aromatic rings and CWAC-NaOH-800 graphene layers. The high PHE removal efficiency of CWAC-NaOH-800, the successful interpretation of sorption dynamics with the multi-compartment model, and the potential to regenerate PHE-loaded adsorbents with the green and economic technology of CAP motivate a strategy for testing CWACs towards the adsorption of other PAHs, application of adsorbents to real wastewaters, and scaling-up to pilot units. Graphical Abstract