Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
16,091 result(s) for "Differential dynamical systems"
Sort by:
An alternative approach for MLE calculation in nonlinear continuous dynamic systems
As an important metric to tell whether a nonlinear dynamic system has a singular attractor or divergent trajectory, the maximal Lyapunov exponent (MLE) can be calculated from either system models or time series of state variable measurement. However, in the real world, due to inaccurate models, measurement noise, and the fact that sometimes state variables cannot be measured directly, it is very difficult to get an accurate MLE, which limits its application in, for example, in prediction of a nonlinear physical system (e. g. power systems) behavior. To overcome these factors, this paper proposed a trajectory estimation-based MLE calculation approach. The proposed approach addressed how to calculate the MLE when state variables cannot be accessed directly, and uncertainties in system models, as well as noise in measurements. The simulation results show that the proposed approach is able to handle well the nonlinear measurement functions between state variables and measurements, and get better results than pure model-based approaches or measurement-based approaches in front of measurement noise and model uncertainties.
Nonnegative and compartmental dynamical systems
This comprehensive book provides the first unified framework for stability and dissipativity analysis and control design for nonnegative and compartmental dynamical systems, which play a key role in a wide range of fields, including engineering, thermal sciences, biology, ecology, economics, genetics, chemistry, medicine, and sociology. Using the highest standards of exposition and rigor, the authors explain these systems and advance the state of the art in their analysis and active control design. Nonnegative and Compartmental Dynamical Systemspresents the most complete treatment available of system solution properties, Lyapunov stability analysis, dissipativity theory, and optimal and adaptive control for these systems, addressing continuous-time, discrete-time, and hybrid nonnegative system theory. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers, as well as for researchers and graduate students who want to understand the behavior of nonnegative and compartmental dynamical systems that arise in areas such as biomedicine, demographics, epidemiology, pharmacology, telecommunications, transportation, thermodynamics, networks, heat transfer, and power systems.
Synchronization in complex networks of nonlinear dynamical systems
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas.
Topological classification of families of diffeomorphisms without small divisors
We give a complete topological classification for germs of one-parameter families of one-dimensional complex analytic diffeomorphisms without small divisors. In the non-trivial cases the topological invariants are given by some functions attached to the fixed points set plus the analytic class of the element of the family corresponding to the special parameter. The proof is based on the structure of the limits of orbits when we approach the special parameter.
Thermodynamics
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics. The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth. This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.
Modern Theory of Dynamical Systems
This volume is a tribute to one of the founders of modern theory of dynamical systems, the late Dmitry Victorovich Anosov.It contains both original papers and surveys, written by some distinguished experts in dynamics, which are related to important themes of Anosov's work, as well as broadly interpreted further crucial developments in the theory of dynamical systems that followed Anosov's original work.Also included is an article by A. Katok that presents Anosov's scientific biography and a picture of the early development of hyperbolicity theory in its various incarnations, complete and partial, uniform and nonuniform.