Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1
result(s) for
"Differentially charge"
Sort by:
Distinct lipid membrane interaction and uptake of differentially charged nanoplastics in bacteria
by
Hua, Yuejin
,
Huang, Jianxiang
,
Wang, Binqiang
in
Bacteria
,
Bacterial cell walls
,
Biodegradation
2022
Background
Nanoplastics have been recently found widely distributed in our natural environment where ubiquitously bacteria are major participants in various material cycles. Understanding how nanoplastics interact with bacterial cell membrane is critical to grasp their uptake processes as well as to analyze their associated risks in ecosystems and human microflora. However, little is known about the detailed interaction of differentially charged nanoplastics with bacteria. The present work experimentally and theoretically demonstrated that nanoplastics enter into bacteria depending on the surface charges and cell envelope structural features, and proved the shielding role of membrane lipids against nanoplastics.
Results
Positively charged polystyrene nanoplastics (PS-NH
2
, 80 nm) can efficiently translocate across cell membranes, while negatively charged PS (PS-COOH) and neutral PS show almost no or much less efficacy in translocation. Molecular dynamics simulations revealed that the PS-NH
2
displayed more favourable electrostatic interactions with bacterial membranes and was subjected to internalisation through membrane penetration. The positively charged nanoplastics destroy cell envelope of Gram-positive
B. subtilis
by forming membrane pore, while enter into the Gram-negative
E. coli
with a relatively intact envelope. The accumulated positively charged nanoplastics conveyed more cell stress by inducing a higher level of reactive oxygen species (ROS). However, the subsequently released membrane lipid-coated nanoplastics were nearly nontoxic to cells, and like wise, stealthy bacteria wrapped up with artifical lipid layers became less sensitive to the positively charged nanoplastics, thereby illustrating that the membrane lipid can shield the strong interaction between the positively charged nanoplastics and cells.
Conclusions
Our findings elucidated the molecular mechanism of nanoplastics’ interaction and accumulation within bacteria, and implied the shielding and internalization effect of membrane lipid on toxic nanoplastics could promote bacteria for potential plastic bioremediation.
Graphical Abstract
Journal Article