Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
76 result(s) for "Diffuse Intrinsic Pontine Glioma - pathology"
Sort by:
Pediatric diffuse intrinsic pontine glioma: where do we stand?
Pediatric diffuse intrinsic pontine glioma (DIPG) represents approximately 20% of all pediatric CNS tumors. However, disease outcomes are dismal with a median survival of less than 1 year and a 2-year overall survival rate of less than 10%. Despite extensive efforts to improve survival outcomes, progress towards clinical improvement has been largely stagnant throughout the last 4 decades. Focal radiotherapy remains the standard of care with no promising single-agent alternatives and no evidence for improvement with the addition of a long list of systemic therapies. A better understanding of the biology of DIPG, though not easy due to obstacles in obtaining pathological material to study, is promising for the development of specific individualized treatment for this fatal disease. Recent studies have found epigenetic mutations to be successful predictors and prognostic factors for developing future management policies. The aim of this review is to give a global overview about the epidemiology, diagnosis, and treatment of DIPG. We further examine the controversial biopsy and autopsy issue that is unique to DIPG and assess the subsequent impact this issue has on the research efforts and clinical management of DIPG.
Therapeutic targeting of differentiation-state dependent metabolic vulnerabilities in diffuse midline glioma
H3K27M diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), exhibit cellular heterogeneity comprising less-differentiated oligodendrocyte precursors (OPC)-like stem cells and more differentiated astrocyte (AC)-like cells. Here, we establish in vitro models that recapitulate DMG-OPC-like and AC-like phenotypes and perform transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs in the different cellular states. We then define strategies to target metabolic vulnerabilities within specific tumor populations. We show that AC-like cells exhibit a mesenchymal phenotype and are sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulate cholesterol biosynthesis, have diminished mitochondrial oxidative phosphorylation (OXPHOS), and are accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors show efficacy and extend survival in preclinical orthotopic models established with stem-like H3K27M DMG cells. Together, this study demonstrates that cellular subtypes within DMGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain. Pediatric brain cancers are lethal malignancies driven by less-differentiated stem-like cells. Here the authors show that these cells exhibit distinct mitochondrial metabolism programs with targetable vulnerabilities.
The oncolytic adenovirus Ad-TD-nsIL12 in primary or progressive pediatric IDH wild-type diffuse intrinsic pontine glioma results of two phase I clinical trials
Two single-center Phase I trials evaluated safety (primary endpoint) and preliminary efficacy (secondary endpoint) of oncolytic adenovirus Ad-TD-nsIL12 in primary (Group A, NCT05717712) and progressive (Group B, NCT05717699) pediatric patients with IDH wild-type (WT) diffuse intrinsic pontine glioma (DIPG). Studies employed single-arm and 3 + 3 dose-escalation design. 9 patients were enrolled in Group A and 6 in Group B. Group A completed the dose escalation, and no severe adverse events were observed. Enrollment in Group B was halted after Group A completed escalation. All patients experienced drug-related adverse events. In Group A, three partial responses and five stable diseases were documented, with a median overall survival (mOS) of 10.3 months after the first virus and 11.3 months after onset. In Group B, three patients had stable diseases, and three had progressive disease, with an mOS of 6.4 months after the first virus and 12.7 months after onset. Both groups demonstrated improved mOS from onset compared to the DIPG patients in our center’s retrospective study (mOS, 8.3 months). Both groups showed increased lymphocytes post-treatment, but only Group A decreased after radiotherapy. These trials confirmed the safety of Ad-TD-nsIL12 and provided preliminary efficacy evidence, offering insights for future clinical applications in DIPG. Bioelectronic sensors can use bacteria to detect toxins as electrical signals but are limited to single analytes. Here, the authors combine synthetic biology and electrochemistry to create a multi-channel bioelectronic sensor that detects multiple toxins and encodes digital output.
H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo
Histone H3 K27M mutation is the defining molecular feature of the devastating pediatric brain tumor, diffuse intrinsic pontine glioma (DIPG). The prevalence of histone H3 K27M mutations indicates a critical role in DIPGs, but the contribution of the mutation to disease pathogenesis remains unclear. We show that knockdown of this mutation in DIPG xenografts restores K27M-dependent loss of H3K27me3 and delays tumor growth. Comparisons of matched DIPG xenografts with and without K27M knockdown allowed identification of mutation-specific effects on the transcriptome and epigenome. The resulting transcriptional changes recapitulate expression signatures from K27M primary DIPG tumors and are strongly enriched for genes associated with nervous system development. Integrated analysis of ChIP-seq and expression data showed that genes upregulated by the mutation are overrepresented in apparently bivalent promoters. Many of these targets are associated with more immature differentiation states. Expression profiles indicate K27M knockdown decreases proliferation and increases differentiation within lineages represented in DIPG. These data suggest that K27M-mediated loss of H3K27me3 directly regulates a subset of genes by releasing poised promoters, and contributes to tumor phenotype and growth by limiting differentiation. The delayed tumor growth associated with knockdown of H3 K27M provides evidence that this highly recurrent mutation is a relevant therapeutic target.
Engineered CXCR3-A expression enhances B7-H3-targeting CAR T cell migration and efficacy against diffuse intrinsic pontine glioma
Diffuse intrinsic pontine glioma (DIPG) is a fatal brainstem tumor desperately in need of better treatments. Chimeric antigen receptor (CAR) T cell therapies for DIPG have demonstrated clinical tolerability and bioactivity, but not universal benefit. A major obstacle is insufficient CAR T cell trafficking to the tumor. As our recent clinical trials have demonstrated locoregional elevation of CXCL10, a ligand of the chemokine receptor CXCR3, here we aim to leverage this CXCL10 upregulation to enhance cell trafficking by engineering our B7-H3-targeting CAR T cells to overexpress CXCR3 variants. We demonstrate that, compared to unmodified B7-H3 CAR T cells, CXCR3-A-modified CAR T cells migrate more efficiently toward CXCR3 ligands in vitro, and when delivered intracerebroventricularly in orthotopic DIPG mouse models, CXCR3-A-modified CAR T cells show enhanced trafficking into the tumor and improved therapeutic efficacy. Overall, our data support the potential for engineering CXCR3-A expression to enhance CAR T cell trafficking and efficacy against DIPG. CAR T cell therapies have been developed to treat paediatric diffuse intrinsic pontine glioma (DIPG), however, clinical efficacy remains limited. Here, the authors report that engineering B7-H3-targeting CAR T cells to express the chemokine receptor CXCR3-A enhances their trafficking and efficacy in DIPG preclinical models.
PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma
Pediatric high-grade gliomas are among the deadliest of childhood cancers due to limited knowledge of early driving events in their gliomagenesis and the lack of effective therapies available. In this study, we investigate the oncogenic role of PPM1D, a protein phosphatase often found truncated in pediatric gliomas such as DIPG, and uncover a synthetic lethal interaction between PPM1D mutations and nicotinamide phosphoribosyltransferase (NAMPT) inhibition. Specifically, we show that mutant PPM1D drives hypermethylation of CpG islands throughout the genome and promotes epigenetic silencing of nicotinic acid phosphoribosyltransferase (NAPRT), a key gene involved in NAD biosynthesis. Notably, PPM1D mutant cells are shown to be sensitive to NAMPT inhibitors in vitro and in vivo, within both engineered isogenic astrocytes and primary patient-derived model systems, suggesting the possible application of NAMPT inhibitors for the treatment of pediatric gliomas. Overall, our results reveal a promising approach for the targeting of PPM1D mutant tumors, and define a critical link between oncogenic driver mutations and NAD metabolism, which can be exploited for tumor-specific cell killing. Mutations in the Protein Phosphatase PPM1D are oncogenic in certain cancers including diffuse intrinsic pontine glioma (DIPG). Here, the authors show that PPM1D mutations in DIPG induce the silencing of the nicotinic acid phosphoribosyltransferase gene and display synthetic lethality with nicotinamide phosphoribosyltransferase inhibitors.
Chorioallantoic membrane (CAM) assay to study treatment effects in diffuse intrinsic pontine glioma
Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor. While there are a number of in vivo rodent models for evaluating tumor biology and response to therapy, these models require significant time and resources. Here, we established the chick-embryo chorioallantoic (CAM) assay as an affordable and time efficient xenograft model for testing a variety of treatment approaches for DIPG. We found that patient-derived DIPG tumors develop in the CAM and maintain the same genetic and epigenetic characteristics of native DIPG tumors. We monitored tumor response to pharmaco- and radiation therapy by 3-D ultrasound volumetric and vasculature analysis. In this study, we established and validated the CAM model as a potential intermediate xenograft model for DIPG and its use for testing novel treatment approaches that include pharmacotherapy or radiation.
An oncohistone-driven H3.3K27M/CREB5/ID1 axis maintains the stemness and malignancy of diffuse intrinsic pontine glioma
Diffuse intrinsic pontine glioma (DIPG), a lethal pediatric cancer driven by H3K27M oncohistones, exhibits aberrant epigenetic regulation and stem-like cell states. Here, we uncover an axis involving H3.3K27M oncohistones, CREB5/ID1, which sustains the stem-like state of DIPG cells, promoting malignancy. We demonstrate that CREB5 mediates elevated ID1 levels in the H3.3K27M/ACVR1WT subtype, promoting tumor growth; while BMP signaling regulates this process in the H3.1K27M/ACVR1MUT subtype. Furthermore, we reveal that H3.3K27M directly enhances CREB5 expression by reshaping the H3K27me3 landscape at the CREB5 locus, particularly at super-enhancer regions. Additionally, we elucidate the collaboration between CREB5 and BRG1, the SWI/SNF chromatin remodeling complex catalytic subunit, in driving oncogenic transcriptional changes in H3.3K27M DIPG. Intriguingly, disrupting CREB5 super-enhancers with ABBV-075 significantly reduces its expression and inhibits H3.3K27M DIPG tumor growth. Combined treatment with ABBV-075 and a BRG1 inhibitor presents a promising therapeutic strategy for clinical translation in H3.3K27M DIPG treatment. Diffuse intrinsic pontine glioma (DIPG) is driven by H3K27M oncohistones, but the exact related mechanisms are poorly understood. Here, the authors identify an H3.3K27M oncohistone-driven CREB5/ID1 axis that promotes transcriptional changes and progression in DIPG, which could represent a potential therapeutic target.
How i do it: Robot-assisted transcerebellar stereotactic approach for brainstem lesion
BackgroundStereotactic approaches to diffuse intrinsic pontine gliomas (DIPGs) remain essential due to advances in molecular biology and management, necessitating tissue sampling. Here we present an effective technique with a biopsy by robot-assisted transcerebellar approach.MethodOur procedure was performed using the ROSA robotic system and the OARM CT scan, which provided stereotactic conditions for this transcerebellar approach to brainstem lesions.ConclusionThe robot-assisted transcerebellar stereotactic approach remains essential to provide complications for biopsy of brainstem lesions.
Bone Morphogenic Proteins in Pediatric Diffuse Midline Gliomas: How to Make New Out of Old?
The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.