Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
806
result(s) for
"Dimethylmercury"
Sort by:
Rivers as the largest source of mercury to coastal oceans worldwide
by
Liu, Shaoda
,
Zhang, Qianru
,
Raymond, Peter A.
in
704/172/4081
,
704/47/4112
,
Atmospheric models
2021
Mercury is a potent neurotoxic substance and accounts for 250,000 intellectual disabilities annually. Worldwide, coastal fisheries contribute the majority of human exposure to mercury through fish consumption. Recent global mercury cycling and risk models attribute all the mercury loading to the ocean to atmospheric deposition. Nevertheless, new regional research has noted that the riverine mercury export to coastal oceans may also be significant to the oceanic burden of mercury. Here we construct an unprecedented high-spatial-resolution dataset estimating global river mercury and methylmercury exports. We find that rivers annually deliver 1,000 (minimum–maximum: 893–1,224) Mg mercury to coastal oceans, threefold greater than atmospheric deposition. Furthermore, high flow events, which are becoming more common with climate change, are responsible for a disproportionately large percentage of the export. Coastal oceans constitute 0.2% of the entire ocean volume but receive 27% of the external mercury input to the ocean. We estimate that the river mercury export could be responsible for a net annual export of 350 (interquartile range: 52–640) Mg mercury across the coastal–open-ocean boundary, although there is still high uncertainty around this estimate. Our results show that river export is the largest source of mercury to coastal oceans worldwide, and continued mercury risk modelling should incorporate the impact of rivers.
Rivers transport about 1,000 Mg mercury annually to coastal oceans, which is threefold greater than the amount delivered by atmospheric deposition, according to a global analysis of mercury measurements in rivers.
Journal Article
Trans-provincial health impacts of atmospheric mercury emissions in China
2019
Mercury (Hg) exposure poses substantial risks to human health. Investigating a longer chain from economic activities to human health can reveal the sources and critical processes of Hg-related health risks. Thus, we develop a more comprehensive assessment method which is applied to mainland China—the largest global Hg emitter. We present a map of Hg-related health risks in China and estimate that 0.14 points of per-foetus intelligence quotient (IQ) decrements and 7,360 deaths from fatal heart attacks are related to the intake of methylmercury in 2010. This study, for the first time, reveals the significant impacts of interprovincial trade on Hg-related health risks across the whole country. For instance, interprovincial trade induced by final consumption prevents 0.39 × 10
−2
points for per-foetus IQ decrements and 194 deaths from fatal heart attacks. These findings highlight the importance of policy decisions in different stages of economic supply chains to reduce Hg-related health risks.
Mercury (Hg) is a global neurotoxic pollutant and has a long chain from economic activities to human health risks. Here the authors presented a map of Hg-related health risks in China and found significant impacts of interprovincial trade on health risks, such as the prevention of deaths from fatal heart attacks by the trade induced by final consumption.
Journal Article
Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining
by
Bergquist, Bridget
,
Gerson, Jacqueline R.
,
Silman, Miles
in
704/172/169/895
,
704/172/4081
,
704/47/4112
2022
Mercury emissions from artisanal and small-scale gold mining throughout the Global South exceed coal combustion as the largest global source of mercury. We examined mercury deposition and storage in an area of the Peruvian Amazon heavily impacted by artisanal gold mining. Intact forests in the Peruvian Amazon near gold mining receive extremely high inputs of mercury and experience elevated total mercury and methylmercury in the atmosphere, canopy foliage, and soils. Here we show for the first time that an intact forest canopy near artisanal gold mining intercepts large amounts of particulate and gaseous mercury, at a rate proportional with total leaf area. We document substantial mercury accumulation in soils, biomass, and resident songbirds in some of the Amazon’s most protected and biodiverse areas, raising important questions about how mercury pollution may constrain modern and future conservation efforts in these tropical ecosystems.
The Peruvian Amazon is facing the highest known input of mercury pollution of any ecosystem globally. Intact forests located near artisanal gold mining are particularly at risk from this toxin.
Journal Article
Potential impacts of mercury released from thawing permafrost
2020
Mercury (Hg) is a naturally occurring element that bonds with organic matter and, when converted to methylmercury, is a potent neurotoxicant. Here we estimate potential future releases of Hg from thawing permafrost for low and high greenhouse gas emissions scenarios using a mechanistic model. By 2200, the high emissions scenario shows annual permafrost Hg emissions to the atmosphere comparable to current global anthropogenic emissions. By 2100, simulated Hg concentrations in the Yukon River increase by 14% for the low emissions scenario, but double for the high emissions scenario. Fish Hg concentrations do not exceed United States Environmental Protection Agency guidelines for the low emissions scenario by 2300, but for the high emissions scenario, fish in the Yukon River exceed EPA guidelines by 2050. Our results indicate minimal impacts to Hg concentrations in water and fish for the low emissions scenario and high impacts for the high emissions scenario.
Permafrost locks away the largest reservoir of mercury on the planet, but climate warming threatens to thaw these systems. Here the authors use models to show that unconstrained fossil fuel burning will dramatically increase the amount of mercury released into future ecosystems.
Journal Article
Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses
2020
Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.
Journal Article
Rice life cycle-based global mercury biotransport and human methylmercury exposure
2019
Protecting the environment and enhancing food security are among the world’s greatest challenges. Fish consumption is widely considered to be the single significant dietary source of methylmercury. Nevertheless, by synthesizing data from the past six decades and using a variety of models, we find that rice could be a significant global dietary source of human methylmercury exposure, especially in South and Southeast Asia. In 2013, globalization caused 9.9% of human methylmercury exposure via the international rice trade and significantly aggravated rice-derived exposure in Africa (62%), Central Asia (98%) and Europe (42%). In 2016, 180 metric tons of mercury were generated in rice plants, 14-fold greater than that exported from oceans via global fisheries. We suggest that future research should consider both the joint ingestion of rice with fish and the food trade in methylmercury exposure assessments, and anthropogenic biovectors such as crops should be considered in the global mercury cycle.
Fish consumption is considered to be the only significant dietary source of MeHg. Here the authors show that rice could also be a significant global dietary source, especially in South and Southeast Asia. International rice trade and joint ingestion of fish and rice could aggravate the MeHg exposure levels in many areas.
Journal Article
Experimental evidence for recovery of mercury-contaminated fish populations
by
Gilmour, Cynthia C.
,
St Louis, Vincent L.
,
Tate, Lori S.
in
631/158/2445
,
631/158/2449
,
631/158/2459
2022
Anthropogenic releases of mercury (Hg)
1
–
3
are a human health issue
4
because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans
5
,
6
. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg
7
–
9
. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38–76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.
In a 15-year whole-ecosystem, single-factor experiment, stopping experimental mercury loading results in rapid decreases in methylmercury contamination of fish populations and almost complete recovery within the timeframe of the study.
Journal Article
Climate change and overfishing increase neurotoxicant in marine predators
by
Dassuncao, Clifton
,
Qureshi, Asif
,
Gillespie, Kyle
in
101/58
,
631/158/47/4112
,
704/158/47/4112
2019
More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone
1
. Around 80% of the inorganic mercury (Hg) that is emitted to the atmosphere from natural and human sources is deposited in the ocean
2
, where some is converted by microorganisms to MeHg. In predatory fish, environmental MeHg concentrations are amplified by a million times or more. Human exposure to MeHg has been associated with long-term neurocognitive deficits in children that persist into adulthood, with global costs to society that exceed US$20 billion
3
. The first global treaty on reductions in anthropogenic Hg emissions (the Minamata Convention on Mercury) entered into force in 2017. However, effects of ongoing changes in marine ecosystems on bioaccumulation of MeHg in marine predators that are frequently consumed by humans (for example, tuna, cod and swordfish) have not been considered when setting global policy targets. Here we use more than 30 years of data and ecosystem modelling to show that MeHg concentrations in Atlantic cod (
Gadus morhua
) increased by up to 23% between the 1970s and 2000s as a result of dietary shifts initiated by overfishing. Our model also predicts an estimated 56% increase in tissue MeHg concentrations in Atlantic bluefin tuna (
Thunnus thynnus
) due to increases in seawater temperature between a low point in 1969 and recent peak levels—which is consistent with 2017 observations. This estimated increase in tissue MeHg exceeds the modelled 22% reduction that was achieved in the late 1990s and 2000s as a result of decreased seawater MeHg concentrations. The recently reported plateau in global anthropogenic Hg emissions
4
suggests that ocean warming and fisheries management programmes will be major drivers of future MeHg concentrations in marine predators.
Overfishing and warming ocean temperature have caused an increase in methylmercury concentrations in some Atlantic predatory fish, and this trend is predicted to continue unless stronger mercury and carbon emissions standards are imposed.
Journal Article
Mercury methylation by metabolically versatile and cosmopolitan marine bacteria
2021
Microbes transform aqueous mercury (Hg) into methylmercury (MeHg), a potent neurotoxin that accumulates in terrestrial and marine food webs, with potential impacts on human health. This process requires the gene pair
hgcAB
, which encodes for proteins that actuate Hg methylation, and has been well described for anoxic environments. However, recent studies report potential MeHg formation in suboxic seawater, although the microorganisms involved remain poorly understood. In this study, we conducted large-scale multi-omic analyses to search for putative microbial Hg methylators along defined redox gradients in Saanich Inlet, British Columbia, a model natural ecosystem with previously measured Hg and MeHg concentration profiles. Analysis of gene expression profiles along the redoxcline identified several putative Hg methylating microbial groups, including Calditrichaeota, SAR324 and Marinimicrobia, with the last the most active based on
hgc
transcription levels. Marinimicrobia
hgc
genes were identified from multiple publicly available marine metagenomes, consistent with a potential key role in marine Hg methylation. Computational homology modelling predicts that Marinimicrobia HgcAB proteins contain the highly conserved amino acid sites and folding structures required for functional Hg methylation. Furthermore, a number of terminal oxidases from aerobic respiratory chains were associated with several putative novel Hg methylators. Our findings thus reveal potential novel marine Hg-methylating microorganisms with a greater oxygen tolerance and broader habitat range than previously recognized.
Journal Article
Dissolved organic matter thiol concentrations determine methylmercury bioavailability across the terrestrial-marine aquatic continuum
2023
The most critical step for methylmercury (MeHg) bioaccumulation in aquatic food webs is phytoplankton uptake of dissolved MeHg. Dissolved organic matter (DOM) has been known to influence MeHg uptake, but the mechanisms have remained unclear. Here we show that the concentration of DOM-associated thiol functional groups (DOM-RSH) varies substantially across contrasting aquatic systems and dictates MeHg speciation and bioavailability to phytoplankton. Across our 20 study sites, DOM-RSH concentrations decrease 40-fold from terrestrial to marine environments whereas dissolved organic carbon (DOC), the typical proxy for MeHg binding sites in DOM, only has a 5-fold decrease. MeHg accumulation into phytoplankton is shown to be directly linked to the concentration of specific MeHg binding sites (DOM-RSH), rather than DOC. Therefore, MeHg bioavailability increases systematically across the terrestrial-marine aquatic continuum as the DOM-RSH concentration decreases. Our results strongly suggest that measuring DOM-RSH concentrations will improve empirical models in phytoplankton uptake studies and will form a refined basis for modeling MeHg incorporation in aquatic food webs under various environmental conditions.
Methylmercury is a strong neurotoxin that accumulates in aquatic biota. Here, the authors demonstrate that the concentration of thiol compounds associated with dissolved organic matter controls the bioavailability of methylmercury in aquatic systems
Journal Article