Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
966 result(s) for "Diols"
Sort by:
Bacterial synthesis of C3-C5 diols via extending amino acid catabolism
Amino acids are naturally occurring and structurally diverse metabolites in biological system, whose potentials for chemical expansion, however, have not been fully explored. Here, we devise a metabolic platform capable of producing industrially important C3-C5 diols from amino acids. The presented platform combines the natural catabolism of charged amino acids with a catalytically efficient and thermodynamically favorable diol formation pathway, created by expanding the substrate scope of the carboxylic acid reductase toward noncognate ω-hydroxylic acids. Using the established platform as gateways, seven different diol-convertible amino acids are converted to diols including 1,3-propanediol, 1,4-butanediol, and 1,5- pentanediol. Particularly, we afford to optimize the production of 1,4-butanediol and demonstrate the de novo production of 1,5-pentanediol from glucose, with titers reaching 1.41 and 0.97 g l−1, respectively. Our work presents a metabolic platform that enriches the pathway repertoire for nonnatural diols with feedstock flexibility to both sugar and protein hydrolysates.
Tunable and functional deep eutectic solvents for lignocellulose valorization
Stabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired ‘stabilization’ function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high β-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the β-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing, however, undesired lignin condensation is a typical drawback. Here the authors develop a tunable ternary DES system that allows for stabilization of reactive intermediates for efficient lignocellulose fractionation.
New Trends in the Conversion of CO2 to Cyclic Carbonates
This work concerns recent advances (mainly in the last five years) in the challenging conversion of carbon dioxide (CO2) into fine chemicals, in particular to cyclic carbonates, as a meaningful measure to reduce CO2 emissions in the atmosphere and subsequent global warming effects. Thus, efficient catalysts and catalytic processes developed to convert CO2 into different chemicals towards a more sustainable chemical industry are addressed. Cyclic carbonates can be produced by different routes that directly, or indirectly, use carbon dioxide. Thus, recent findings on CO2 cycloaddition to epoxides as well as on its reaction with diols are reviewed. In addition, indirect sources of carbon dioxide, such as urea, considered a sustainable process with high atom economy, are also discussed. Reaction mechanisms for the transformations involved are also presented.
Recyclable and malleable thermosets enabled by activating dormant dynamic linkages
Chemical recycling of polymers is critical for improving the circular economy of plastics and environmental sustainability. Traditional thermoset polymers have generally been considered permanently crosslinked materials that are difficult or impossible to recycle. Herein, we demonstrate that by activating ‘dormant’ covalent bonds, traditional polycyanurate thermosets can be recycled into the original monomers, which can be circularly reused for their original purpose. Through retrosynthetic analysis, we redirected the synthetic route from forming conventional C–N bonds via irreversible cyanate trimerization to forming the C–O bonds through reversible nucleophilic aromatic substitution of alkoxy-substituted triazine derivatives by alcohol nucleophiles. The new reversible synthetic route enabled the synthesis of previously inaccessible alkyl-polycyanurate thermosets, which exhibit excellent film properties with high chemical resistance, closed-loop recyclability and reprocessing capability. These results show that ‘apparently dormant’ dynamic linkages can be activated and utilized to construct fully recyclable thermoset polymers with a broader monomer scope and increased sustainability. Alkyl and aryl polycyanurate networks have now been prepared through polymerization of diols and substituted triazines via a dynamic S N Ar reaction. When treated with excess mono alcohol or phenol, the polycyanurate networks can be depolymerized into the starting monomers, which can be separated and reused, thus achieving closed-loop recycling.
The Long chain Diol Index
Long chain 1,13- and 1,15-diols are lipids which are omnipresent in marine environments, and the Long chain Diol Index (LDI), based on their distributions, has previously been introduced as a proxy for sea surface temperature. The main biological sources for long chain 1,13- and 1,15-diols have remained unknown, but our combined lipid and 23S ribosomal RNA (23S rRNA) analyses on suspended particulate matter from the Mediterranean Sea demonstrate that these lipids are produced by a marine eustigmatophyte group that originated before the currently known eustigmatophytes diversified. The 18S rRNA data confirm the existence of early-branching marine eustigmatophytes, which occur at a global scale. Differences between LDI records and other paleotemperature proxies are generally attributed to differences between the seasons in which the proxy-related organisms occur. Our results, combined with available LDI data from surface sediments, indicate that the LDI primarily registers temperatures from the warmest month when mixed-layer depths, salinity, and nutrient concentrations are low. The LDI may not be applicable in areas where Proboscia diatoms contribute 1,13-diols, but this can be recognized by enhanced contributions of C28 1,12 diol. Freshwater input may also affect the correlation between temperature and the LDI, but relative C32 1,15-diol abundances help to identify and correct for these effects. When taking those factors into account, the calibration error of the LDI is 2.4 °C. As a well-defined proxy for temperatures of the warmest seasons, the LDI can unlock important and previously inaccessible paleoclimate information and will thereby substantially improve our understanding of past climate conditions.
A Sequential Catalytic Carbonation–Hydrolysis–Diol Dehydrogenation Reaction of Epoxides
The design of cascade reactions in synthetic programs is of interest, particularly if the individual steps involve catalyzed reactions, and simple and highly available molecules such as carbon dioxide (CO2), water (H2O), and dihydrogen (H2) are employed. Herein, a three‐step sequential reaction is shown from epoxides to dehydrogenated diols, catalyzed by a combination of commercially available ionic liquids and supported Pt species on charcoal (Pt/C) in low amounts (<0.05 mol%). The process involves first carbonation of epoxides with CO2, followed by the opening of the carbonate with H2O, and then an acceptor‐less dehydrogenation reaction of the resulting diol to release H2. The inclusion of this last step in the one‐pot synthesis of diols from epoxides is, to the knowledge, unprecedented. Reactive and kinetic experiments for each individual step reveal the key role of CO2 to avoid epoxide polymerizations and enable the synthesis of a clean diol for the final dehydrogenation reaction. A sequential/cascade carbonation–hydrolysis–diol dehydrogenation reaction of epoxides is catalyzed by <0.05 mol% of a commercially available ionic liquid and platinum on carbon, to make react CO2 and generate H2. The final catalytic system is achieved after studying the individual steps and finding common reaction conditions. These results open the way to engage harsh reactions to the epoxide hydration reaction.
Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor
Alcohol oxidation reactions are widely used for the preparation of aldehydes and ketones. The electrolysis of alcohols to carbonyl compounds have been underutilized owing to low efficiency. Herein, we report an electrochemical oxidation of various alcohols in a continuous-flow reactor without external oxidants, base or mediators. The robust electrochemical oxidation is performed for a variety of alcohols with good functional group tolerance, high efficiency and atom economy, whereas mechanistic studies support the benzylic radical intermediate formation and hydrogen evolution. The electrochemical oxidation proves viable on diols with excellent levels of selectivity for the benzylic position. Alcohol oxidation to carbonyl compounds is a very useful functional group transformation in organic synthesis. Here, the authors perform the direct electrochemical oxidation of various alcohols to the corresponding ketones in a continuous-flow reactor without external oxidants, base or mediators.
Recent Advances in Catalytic Hydrogenation of Furfural
Furfural has been considered as one of the most promising platform molecules directly derived from biomass. The hydrogenation of furfural is one of the most versatile reactions to upgrade furanic components to biofuels. For instance, it can lead to plenty of downstream products, such as (tetrahydro)furfuryl alcohol, 2-methyl(tetrahydro)furan, lactones, levulinates, cyclopentanone(l), or diols, etc. The aim of this review is to discuss recent advances in the catalytic hydrogenation of furfural towards (tetrahydro)furfuryl alcohol and 2-methyl(tetrahydro)furan in terms of different non-noble metal and noble metal catalytic systems. Reaction mechanisms that are related to the different catalytic materials and reaction conditions are properly discussed. Selective hydrogenation of furfural could be modified not only by varying the types of catalyst (nature of metal, support, and preparation method) and reaction conditions, but also by altering the reaction regime, namely from batch to continuous flow. In any case, furfural catalytic hydrogenation is an open research line, which represents an attractive option for biomass valorization towards valuable chemicals and fuels.
Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations
The delivery of alkyl radicals through photocatalytic deoxygenation of primary alcohols under mild conditions is a so far unmet challenge. In this report, we present a one-pot strategy for deoxygenative Giese reaction of alcohols with electron-deficient alkenes, by using xanthate salts as alcohol-activating groups for radical generation under visible-light photoredox conditions in the presence of triphenylphosphine. The convenient generation of xanthate salts and high reactivity of sequential C–S/C–O bond homolytic cleavage enable efficient deoxygenation of primary, secondary and tertiary alcohols with diverse functionality and structure to generate the corresponding alkyl radicals, including methyl radical. Moreover, chemoselective radical monodeoxygenation of diols is achieved via selective formation of xanthate salts. The generation of alkyl radicals through deoxygenation of abundant alcohols via photoredox catalysis is of interest. In this study, the authors report a one-pot strategy for visible-light-promoted photoredox coupling of alcohols with electron-deficient alkenes, assisted by carbon disulfide and triphenylphosphine.
Sustainable polyesters via direct functionalization of lignocellulosic sugars
The development of sustainable plastics from abundant renewable feedstocks has been limited by the complexity and efficiency of their production, as well as their lack of competitive material properties. Here we demonstrate the direct transformation of the hemicellulosic fraction of non-edible biomass into a tricyclic diester plastic precursor at 83% yield (95% from commercial xylose) during integrated plant fractionation with glyoxylic acid. Melt polycondensation of the resulting diester with a range of aliphatic diols led to amorphous polyesters ( M n  = 30–60 kDa) with high glass transition temperatures (72–100 °C), tough mechanical properties (ultimate tensile strengths of 63–77 MPa, tensile moduli of 2,000–2,500 MPa and elongations at break of 50–80%) and strong gas barriers (oxygen transmission rates (100 µm) of 11–24 cc m −2  day −1  bar −1 and water vapour transmission rates (100 µm) of 25–36 g m −2  day −1 ) that could be processed by injection moulding, thermoforming, twin-screw extrusion and three-dimensional printing. Although standardized biodegradation studies still need to be performed, the inherently degradable nature of these materials facilitated their chemical recycling via methanolysis at 64 °C, and eventual depolymerization in room-temperature water. Functionalizing an intact carbohydrate core with acetals allows for the dramatically simplified production of a plastic precursor directly during the initial fractionation of non-edible biomass. When polymerized, the rigid and polar carbohydrate core also leads to bioplastics with competitive material and end-of life properties.