Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
307 result(s) for "Disc cutters"
Sort by:
Using a high-pressure water jet-assisted tunnel boring machine to break rock
The concept of tunnel boring machine (TBM) disc cutter rock breaking coupled with high-pressure water jets has been proposed to overcome the difficulties that occur when TBMs encounter extremely hard rocks. Thus, to meet actual engineering requirements for the TBM construction of tunnels as part of the Wan’anxi water diversion project in Longyan City (Fujian Province, China), experiments were conducted on high-pressure water jet-assisted TBM disc cutter rock breaking. By varying kerf depth and width under different water jet parameters and performing disc cutter rock breaking tests on rock surfaces with no kerf, single kerf, and double kerfs, the effects of different kerf depths on the disc cutter rock breaking process, load, and efficiency were examined. The test results showed that high-pressure water jets can generate the regular kerfs required for the coupled disc cutter rock breaking of granite. Employing the coupled rock breaking method also resulted in a decrease in specific energy and an approximately 40% decrease in the normal force of the disc cutter, thereby significantly improving rock breaking efficiency. These results provide key technical parameters for the design and manufacture of high-pressure water jet-assisted rock-breaking TBMs and serves as a reference for similar processes.
Evaluation of TBM Cutter Wear in Naghadeh Water Conveyance Tunnel and Developing a New Prediction Model
Replacing worn disc cutters in a tunnel boring machine (TBM) operation is a time-consuming and expensive process. This article presents the study of disc cutter wear rate during the excavation of 36 km Naqadeh water conveyance tunnel with a diameter of 6.325 m. The construction of this tunnel in northwest Iran has been recently completed. The geological setting of the tunnel consists of variable lithology, including limestone, shale, granite, and granodiorite units. Field data were collected and analyzed from TBM tunneling of 9.5 km of the tunnel. The analysis was performed by incorporating the types of wear and comparing the accuracy of traditional cutter wear prediction models. The new model was developed using statistical analysis of the observed cutter wear in this project. The validity of the proposed model was evaluated using the excavation data for the following 2 km of the tunnel. The model developed in this study allows estimating wear rate and cutter life using common rock characterization parameters such as the Cerchar abrasivity index (CAI) and the uniaxial compressive strength (UCS).
Theoretical Research and Simulation Analysis on the Cutter Spacing of Double Disc Cutters Breaking Rock
The arrangement of disc cutter on a cutter head is important to improve the performance of TBM (tunnel boring machine) cutter, cutter life and cutter disc bearing life, then reduce vibration of TBM and reduce the noise. The rock breaking with double disc cutters is the basis of study on the distribution of disc cutter on cutter head, and it plays an important role on optimum arrangement of disc cutter on cutter head. In the process of rock breaking with double disc cutters, the axial vertical distance between two cutters is an important construction parameter, which directly affects rock breaking efficiency. Therefore, research on optimal cutter spacing and analysis of adaptability between cutter spacing and rock characteristics play an important role in optimizing the arrangement of cutter on the cutter head and improving the rock breaking efficiency of TBM. This paper analyzed the breaking rock force of double disc cutters. Taking granite samples as an example, the process of rock breaking with double disc cutters was simulated. Then rock fragmentation analysis based on different cutter spacing was carried out. Finally, the rock of different cutter spacing adaptability was studied. A series of conclusions about double disc cutters breaking rock were drawn.
Rotary ultrasonic assisted machining of aramid fiber–reinforced polymer composite: a numerical and experimental investigation using various cutting tools
Aramid fiber–reinforced polymer composite (AFRPC) is popular in aerospace and defense industries owing to its superior thermal and mechanical properties. However, its intricate hexagonal cellular structure and the material’s heterogeneous, soft, and brittle characteristics lead to significant surface defects, such as burr formation, wall tearing, roughness, dimensional inaccuracies, and uncut fibers during traditional machining. Such poor machining quality issues notably affect the operational lifespan and functional performance of its sandwich structural components. To address these issues, the rotary ultrasonic assisted machining (RUSAM) process has been introduced. To thoroughly investigate the RUSAM of AFRPC using various cutting tools, a 3D finite element model was developed and validated. This paper mainly investigates the effect of various machining parameters such as vibration amplitude (VA), cutting width (CW), feed rate (FR), and spindle speed (SS) on the cutting force, surface morphology, burr formation, and burr height during RUSAM of AFRPC structure by plane and toothed disc cutters. The burr height was found to decrease with the increase of spindle speed (60.82% and 71.00%) and vibration amplitude (78.15% and 82.32%), whereas increase with cutting width ( 149.81 % and 321.16%) and feed rate (156.53% and 314.83%) during RUSAM by plane and toothed disc cutters, respectively. The pattern of variation of burr height with machining parameters was found similar to that of the cutting force. Significance analysis based on 4 levels, 4 factors orthogonal L 16 ( 4 4 ) experiments revealed the cutting width to be the most influential parameter on the burr height and cutting force followed by the spindle speed, feed rate, and vibration amplitude during RUSAM of the AFRPC core by the disc cutters. Up to 62.54 % reduction in burr height was realized by rotary ultrasonic assisted machining compared to the conventional machining. Under specified operating conditions, the disc cutter generates a higher but less number of burr as compared to the toothed disc cutter without any tearing defects. 3–10% and 5–20% burrs were observed during rotary ultrasonic assisted machining compared to 20–50% and 40–70% burrs during conventional machining of AFRPC structure by plane and toothed disc cutters, respectively. This experimental research will be extremely useful to comprehend the burr formation mechanism and optimize the machining parameters for enhanced surface morphology of AFRPC structures.
Prediction Model of TBM Disc Cutter Wear During Tunnelling in Heterogeneous Ground
When shield tunnelling is constructed in complex geological conditions using a tunnel boring machine, the disc cutter in the cutterhead easily wears to the failure state, particularly when the ground conditions are heterogeneous. This paper summarises the failure modes of the disc cutter in heterogeneous ground conditions into three categories, based on the observed wear data from field: (1) uniform disc cutter wear, (2) non-uniform disc cutter wear, and (3) breakage of cutter ring. Subsequently, the stress state of a disc cutter in the heterogeneous ground was analysed and the effective factors were investigated. The relationships between friction energy during cutting, working status of the machine and the characteristics of the geological conditions were evaluated. Based on the stress analysis and friction energy, a prediction model was proposed. The proposed model was applied to two field case studies: pertaining to uniform and mixed-face ground conditions, for which the empirical coefficient k for energy transfer was also determined. The preliminary results from this research indicated that the proposed model was valid for both homogeneous and heterogeneous ground conditions. Further case studies provided by co-operators are expected to improve the effectiveness of the proposed model.
Study of Rock-Cutting Process by Disc Cutters in Mixed Ground based on Three-dimensional Particle Flow Model
With the increasing number of long tunnelling and urban subway constructions, mixed-face ground conditions are frequently encountered. Rock fragmentation mechanism under disc cutter cutting in TBM tunneling through the mixed-face ground is complex and can lead to engineering difficulties. During TBM tunneling in mixed-face ground with soft rock in upper layer and hard rock in the lower layer, reduction of the advance rate and reduced rotational speed of cutter head occur compared with homogeneous ground. As a result, the muck in the working chamber cannot be replaced timely, leading to the formation of mud cake. Additionally, the disc cutters cannot rotate normally and are worn eccentrically and severely. Finally, the cutters collide with hard rock periodically at the interface between soft and hard rock, thus being subject to a huge impact load, even overload on some cutters, resulting in chipping of the cutter ring and damage to the cutter holder. This paper presents numerical analysis of the disc cutter cutting process considering the difference of rock-cutting behaviors of disc cutters in the mixed-face ground with the aid of PFC3D code. Based on the forces imposed on the disc cutter and rock crack propagation, TBM tunneling in the mixed-face ground is investigated. The decrease of the mean rolling force of the disc cutter causes rotation hindering in the disc cutter in soft rock stratum leading to flat cutter wear. The gap of the normal force between the soft rock and hard rock generates the overturning moment of the cutter head, which causes the eccentricity and vibration of the cutter head.
Multi-Scale Study on Ultrasonic Cutting of Nomex Honeycomb Composites of Disc Cutters
To address the issues of burr formation, structural deformation, and tearing in the conventional machining of Nomex honeycomb composites, this study aims to clarify the mechanisms by which ultrasonic vibration-assisted cutting enhances machining quality. A multi-scale analysis framework is developed to examine the effects of ultrasonic vibration on fiber distribution, cell-level shear response, and the overall cutting mechanics. At the microscale, analyses show that ultrasonic vibration mitigates stress concentrations, thereby shortening fiber length. At the mesoscale, elastic buckling and plastic yielding models show that ultrasonic vibration lowers shear strength and modifies the deformation. A macro-scale comparison of cutting behavior with and without ultrasonic vibration was conducted. The results indicate that the intermittent contact effect induced by vibration significantly reduces cutting force. Specifically, at an amplitude of 40 μm, the cutting force decreased by approximately 29.7% compared to the condition without ultrasonic vibration, with an average prediction error below 8.6%. Compared to conventional machining, which causes the honeycomb angle to deform to approximately 130°, ultrasonic vibration preserves the original 120° geometry and reduces burr length by 36%. These results demonstrate that ultrasonic vibration effectively reduces damage through multi-scale interactions, offering theoretical guidance for high-precision machining of fiber-reinforced composites.
The influence of penetration and cutting speed of pipe-jacking disc cutter on its cutting force and rock-breaking efficiency
The disc cutter, which is essential to pipe-jacking to break rock, is the main tool used in this crucial method of tunnel building. The present research is focused on the force of the disc cutter and how well it breaks rock. This paper uses the medium-weathered granite of the Xinjing Mountain Substation - Beifeng Substation as an example to study the effects of penetration and cutting speed on the force and rock-breaking efficiency of the disc cutter. It does this by using ABAQUS to analyze the disc cutter’s operating state under various penetration and cutting speeds and to find the ideal rock-breaking efficiency. The findings demonstrate that: (1) Breaking rock is a discontinuous process that advances continuously. The rock unit beneath the disc cutter ring will change from an elastic to an elastic condition as the disc cutter moves. The rock unit beneath the disc cutter ring will undergo continuous extrusion as the disc cutter moves, changing from an elastic to a plastic state until failing as a result of damage. (2) All of the cutting forces rise as penetration and cutting speed increase, but the rolling force is more affected by penetration and vertical force by cutting speed. When the disc cutter breaks in a straight line, the side force is little. (3) The rock-breaking efficiency increases with a 4 mm penetration and a faster cutting speed.
Experimental and numerical study on the indentation behavior of TBM disc cutter on hard-rock precutting kerfs by high-pressure abrasive water jet
Tunnel boring machine (TBM) excavation of high strength or highly abrasive rock strata has some limitations, such as slow advance speed, low rock-breaking efficiency, and significant increase in the disc cutter changes and construction cost. To improve the rock boreability, a novel breakage method for hard rocks using a TBM disc cutter penetrating into kerfs precut by a high-pressure abrasive water jet is explored. With a confining pressure of 5 MPa, a series of cutter indentation tests and particle flow simulations of granite with two precutting kerfs are carried out to investigate the indentation behavior and the breaking efficiency. The effects of the kerf depth and the kerf spacing on the normal indentation force, rock chip volume, and specific energy are studied. The initiation, propagation, and coalescence modes of the surface and internal cracks and the failure mechanism are analyzed. The results show that the average peak force decreases significantly with the increase of the kerf depth, and the maximum rock chip volume and minimum specific energy are obtained at a kerf depth of 18.14 mm. The failure mode of kerf specimens after two indentations could be divided into the flat and slow shallow failure, one-sided inclined failure, and two-sided inclined failure. The micro-crack distribution of a single shallow kerf under low confining pressure is similar to that of intact rocks, while it is oblate and semi-elliptical under high confining pressure. However, for a single deep kerf, the breakage consists of a wedge-shaped crushed zone, a failure zone, and a damage zone around the kerf boundary and the bilateral inclined cracks, which are almost not affected by the confining pressure.
Feasibility Study for the Remanufacturing of H13 Steel Heat-Treated TBM Disc Cutter Rings with Uniform Wear Failure Using GMAW
Given that the heat treatment states of the base metal have a great influence on the surfacing repair layer, this paper carried out a feasibility study for the remanufacturing of the failed cutter rings of TBM disc cutters with uniform wear (hereinafter referred to as normally-worn ring) using the gas metal arc welding technology (GMAW). Firstly, this paper developed a heat treatment process route for H13 steel cutter rings. Secondly, the heat treatment process is numerically analyzed based on the developed route, and the rationality of the route is verified from the distribution characteristics of temperature, phase, and stress fields. Subsequently, heat treatment tests were carried out, and the physical and mechanical properties of the base metal samples prepared under laboratory conditions were evaluated respectively and systematically. Based on the comprehensive performance evaluation value calculated by the weighted comparative analysis method, it was clear that the comprehensive performance of the quenched base metal samples was 7.6% higher than that of the engineering cutter ring interior. Therefore, it is reasonable to replace the failed engineering cutter rings repaired under laboratory conditions with the prepared samples as economical alternatives. Finally, the remanufacturing of the base metal samples using GMAW was carried out, and then the remanufacturing performance of the base metal samples was analyzed. The study concluded that the comprehensive performance of the surfacing repair layer was slightly lower than that of the engineering cutter ring edge (4.1%), thus proving that the idea of surfacing remanufacturing of the normally-worn ring proposed in this paper was basically feasible.