Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,027 result(s) for "Discontinuity"
Sort by:
Body-Wave Imaging of Earth's Mantle Discontinuities from Ambient Seismic Noise
Ambient seismic noise correlations are widely used for high-resolution surface-wave imaging of Earth's lithosphere. Similar observations of the seismic body waves that propagate through the interior of Earth would provide a window into the deep Earth. We report the observation of the mantle transition zone through noise correlations of P waves as they are reflected by the discontinuities associated with the top [410 kilometers (km)] and the bottom (660 km) of this zone. Our data demonstrate that high-resolution mapping of the mantle transition zone is possible without using earthquake sources.
boundary between the Indian and Asian tectonic plates below Tibet
The fate of the colliding Indian and Asian tectonic plates below the Tibetan high plateau may be visualized by, in addition to seismic tomography, mapping the deep seismic discontinuities, like the crust-mantle boundary (Moho), the lithosphere-asthenosphere boundary (LAB), or the discontinuities at 410 and 660 km depth. We herein present observations of seismic discontinuities with the P and S receiver function techniques beneath central and western Tibet along two new profiles and discuss the results in connection with results from earlier profiles, which did observe the LAB. The LAB of the Indian and Asian plates is well-imaged by several profiles and suggests a changing mode of India-Asia collision in the east-west direction. From eastern Himalayan syntaxis to the western edge of the Tarim Basin, the Indian lithosphere is underthrusting Tibet at an increasingly shallower angle and reaching progressively further to the north. A particular lithospheric region was formed in northern and eastern Tibet as a crush zone between the two colliding plates, the existence of which is marked by high temperature, low mantle seismic wavespeed (correlating with late arriving signals from the 410 discontinuity), poor Sn propagation, east and southeast oriented global positioning system displacements, and strikingly larger seismic (SKS) anisotropy.
Global Observations of Mantle Discontinuities Using SS and PP Precursors
SS and PP precursors are currently the only body wave data types that have significant coverage in both oceanic and continental regions to study the existence and characteristics of mantle discontinuities on a global scale. Here, the techniques used by global seismologists to observe SS and PP precursors are reviewed. Seismograms, aligned on SS or PP, are stacked using normal move out (NMO) techniques to obtain common depth point gathers. Bootstrap methods are employed to determine 95% confidence levels of the stacks and robustness of the observations. With these relatively simple techniques, a range of discontinuities has been found in the mantle up to 1,200 km depth. The stacks are dominated by the transition zone discontinuities at 410, 520 and 660 km depth, but additional discontinuities at 220, 300–350, 800–900 and 1,100–1,200 km depth are also seen in certain regions. An overview is given of the most recent observational results with a discussion of their mineral physical interpretation and geodynamical significance. Both seismology and mineral physics agree on the level of complexity at the transition discontinuities: a simple 410, a more complicated 520 and a highly complicated 660-km discontinuity are consistently found in both disciplines.
DOES A LONG-TERM ORIENTATION CREATE VALUE? EVIDENCE FROM A REGRESSION DISCONTINUITY
Research summary: In this paper, we theorize and empirically investigate how a long-term orientation impacts firm value. To study this relationship, we exploit exogenous changes in executives' long-term incentives. Specifically, we examine shareholder proposals on long-term executive compensation that pass or fail by a small margin of votes. The passage of such \"close call\" proposals is akin to a random assignment of long-term incentives and hence provides a clean causal estimate. We find that the adoption of such proposals leads to (1) an increase in firm value and operating performance—suggesting that a long-term orientation is beneficial to companies—and (2) an increase in firms' investments in long-term strategies such as innovation and stakeholder relationships. Overall, our results are consistent with a \"time-based\" agency conflict between shareholders and managers. Managerial summary: This paper shows that corporate short-termism is hampering business success. We show clear, causal evidence that imposing long-term incentives on executives—in the form of long-term executive compensation—improves business performance. Long-term executive compensation includes restricted stocks, restricted stock options, and long-term incentive plans. Firms that adopted shareholder resolutions on long-term compensation experienced a significant increase in their stock price. This stock price increase foreshadowed an increase in operating profits that materialized after two years. We unpack the reasons for these improvements in performance, and find that firms that adopted these shareholder resolutions made more investments in R&D and stakeholder engagement, especially pertaining to employees and the natural environment.
Experimental and Numerical Studies on the Evolution of Shear Behaviour and Damage of Natural Discontinuities at the Interface Between Different Rock Types
Recent research has paid little attention to the shear damage of discontinuities with different joint wall material (DDJM). In this paper, we present an investigation on the evolution of the shear behaviour and the damage of three typical types of natural DDJM in a sliding-prone stratum of China. Experimental direct shear tests were performed on 14 pairs of natural DDJM specimens to examine the changes in the shear strengths and surface damages of the DDJM with increasing normal stresses and an increasing number of shear cycles by evaluating surface damages via damage zone distribution, damage area percentage, and variation of joint roughness coefficient (JRC). The results indicate that the differences in the shear damage between the two halves are closely related to the difference in strength of the two joint walls of the DDJM specimens with similar initial JRC values of the two joint surfaces. Simultaneously, parallel numerical direct shear tests were conducted in PFC3D . The performance of the numerical modeling was examined by comparing the parameters of shear strength, damage area and damage depth of DDJM specimens with those obtained in the experimental direct shear tests. Then the validated models were used to explore the evolution of the damage depth of DDJM specimens during the shearing process. The results demonstrate that the proposed numerical approach has the ability to reproduce the shear behavior and damage of DDJM reasonably and could be used to examine the internal damage of DDJM which are not easy to investigate via laboratory experiments.
A Machine Learning Approach to Extract Rock Mass Discontinuity Orientation and Spacing, from Laser Scanner Point Clouds
This study wants to give a contribution to the semi-automatic evaluation of rock mass discontinuities, orientation and spacing, as important parameters used in Engineering. In complex and inaccessible study areas, a traditional geological survey is hard to conduct, therefore, remote sensing techniques have proven to be a very useful tool for discontinuity analysis. However, critical expert judgment is necessary to make reliable analyses. For this reason, the open-source Python tool named DCS (Discontinuities Classification and Spacing) was developed to manage point cloud data. The tool is written in Python and is based on semi-supervised clustering. By this approach the users can: (a) estimate the number of discontinuity sets (here referred to as “clusters”) using the Error Sum of Squares (SSE) method and the K-means algorithm; (b) evaluate step by step the quality of the classification visualizing the stereonet and the scatterplot of dip vs. dip direction from the clustering; (c) supervise the clustering procedure through a manual initialization of centroids; (d) calculate the normal spacing. In contrast to other algorithms available in the literature, the DCS method does not require complex parameters as inputs for the classification and permits the users to supervise the procedure at each step. The DCS approach was tested on the steep coastal cliff of Ancona town (Italy), called the Cardeto–Passetto cliff, which is characterized by a complex fracturing and is largely affected by rockfall phenomena. The results of discontinuity orientation were validated with the field survey and compared with the ones of the FACETS plug-in of CloudCompare. In addition, the algorithm was tested and validated on regular surfaces of an anthropic wall located at the bottom of the cliff. Eventually, a kinematic analysis of rock slope stability was performed, discussing the advantages and limitations of the methods considered and making fundamental considerations on their use.
Does Corporate Social Responsibility Lead to Superior Financial Performance? A Regression Discontinuity Approach
This study examines the effect of shareholder proposals related to corporate social responsibility (CSR) on financial performance. Specifically, I focus on CSR proposals that pass or fail by a small margin of votes. The passage of such “close call” proposals is akin to a random assignment of CSR to companies and hence provides a quasi-experiment to study the effect of CSR on performance. I find that the adoption of close call CSR proposals leads to positive announcement returns and superior accounting performance, implying that these proposals are value enhancing. When I examine the channels through which companies benefit from CSR, I find that labor productivity and sales growth increase after the vote. Finally, I document that close call CSR proposals differ from non-close proposals along several dimensions. Accordingly, although my results imply that adopting close call CSR proposals is beneficial to companies, they do not necessarily imply that CSR proposals are beneficial in general. Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2014.2038 . This paper was accepted by Wei Jiang, finance .
A poorly mixed mantle transition zone and its thermal state inferred from seismic waves
The abrupt changes in mineralogical properties across the Earth’s mantle transition zone substantially impact convection and thermochemical fluxes between the upper and lower mantle. While the 410-km discontinuity at the top of the mantle transition zone is detected with all types of seismic waves, the 660-km boundary is mostly invisible to underside P-wave reflections (P660P). The cause for this observation is debated. The dissociation of ringwoodite and garnet into lower-mantle minerals both contribute to the ‘660’ visibility; only the garnet reaction favours material exchanges across the discontinuity. Here, we combine large datasets of SS and PP precursors, mineralogical modelling and data-mining techniques to obtain a global thermal map of the mantle transition zone, and explain the lack of P660P visibility. We find that its prevalent absence requires a chemically unequilibrated mantle, and its visibility in few locations is associated with potential temperatures greater than 1,800 K. Such temperatures occur in approximately 0.6% of Earth, indicating that the 660 is dominated by ringwoodite decomposition, which tends to impede mantle flow. We find broad regions with elevated temperatures beneath the Pacific surrounded by major volcanic hotspots, indicating plume retention and ponding of hot materials in the mantle transition zone. The mantle transition zone is poorly, mechanically mixed, and acts to impede mantle flow, according to seismic observations integrated with detailed mineral-physics models.
\Yet Once More\: The Double-Slit Experiment and Quantum Discontinuity
This article reconsiders the double-slit experiment from the nonrealist or, in terms of this article, \"reality-without-realism\" (RWR) perspective, grounded in the combination of three forms of quantum discontinuity: (1) \"Heisenberg discontinuity\", defined by the impossibility of a representation or even conception of how quantum phenomena come about, even though quantum theory (such as quantum mechanics or quantum field theory) predicts the data in question strictly in accord with what is observed in quantum experiments); (2) \"Bohr discontinuity\", defined, under the assumption of Heisenberg discontinuity, by the view that quantum phenomena and the data observed therein are described by classical and not quantum theory, even though classical physics cannot predict them; and (3) \"Dirac discontinuity\" (not considered by Dirac himself, but suggested by his equation), according to which the concept of a quantum object, such as a photon or electron, is an idealization only applicable at the time of observation and not to something that exists independently in nature. Dirac discontinuity is of particular importance for the article's foundational argument and its analysis of the double-slit experiment.
Distinct slab interfaces imaged within the mantle transition zone
Oceanic lithosphere descends into Earth’s mantle at subduction zones and drives material exchange between Earth’s surface and its deep interior. The subduction process creates chemical and thermal heterogeneities in the mantle, with the strongest gradients located at the interfaces between subducted slabs and the surrounding mantle. Seismic imaging of slab interfaces is key to understanding slab compositional layering, deep-water cycling and melting, yet the existence of slab interfaces below 200 km remains unconfirmed. Here, we observe two sharp and slightly dipping seismic discontinuities within the mantle transition zone beneath the western Pacific subduction zone that coincide spatially with the upper and lower bounds of the high-velocity slab. Based on a multi-frequency receiver function waveform modelling, we found the upper discontinuity to be consistent with the Mohorovičić discontinuity of the subducted oceanic lithosphere in the mantle transition zone. The lower discontinuity could be caused by partial melting of sub-slab asthenosphere under hydrous conditions in the seaward portion of the slab. Our observations show distinct slab–mantle boundaries at depths between 410 and 660 km, deeper than previously observed, suggesting a compositionally layered slab and high water contents beneath the slab. Two seismic discontinuities in the mantle transition zone beneath the western Pacific represent subducted slab interfaces that could be the slab Moho and partially molten sub-slab asthenosphere, according to an analysis of seismic data.