Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,526 result(s) for "Disease Susceptibility - microbiology"
Sort by:
Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease
ObjectiveThere is substantial inter-individual diversity in the susceptibility of alcoholics to liver injury. Alterations of intestinal microbiota (IM) have been reported in alcoholic liver disease (ALD), but the extent to which they are merely a consequence or a cause is unknown. We aimed to demonstrate that a specific dysbiosis contributes to the development of alcoholic hepatitis (AH).DesignWe humanised germ-free and conventional mice using human IM transplant from alcoholic patients with or without AH. The consequences on alcohol-fed recipient mice were studied.ResultsA specific dysbiosis was associated with ALD severity in patients. Mice harbouring the IM from a patient with severe AH (sAH) developed more severe liver inflammation with an increased number of liver T lymphocyte subsets and Natural Killer T (NKT) lymphocytes, higher liver necrosis, greater intestinal permeability and higher translocation of bacteria than mice harbouring the IM from an alcoholic patient without AH (noAH). Similarly, CD45+ lymphocyte subsets were increased in visceral adipose tissue, and CD4+T and NKT lymphocytes in mesenteric lymph nodes. The IM associated with sAH and noAH could be distinguished by differences in bacterial abundance and composition. Key deleterious species were associated with sAH while the Faecalibacterium genus was associated with noAH. Ursodeoxycholic acid was more abundant in faeces from noAH mice. Additionally, in conventional mice humanised with the IM from an sAH patient, a second subsequent transfer of IM from an noAH patient improved alcohol-induced liver lesions.ConclusionsIndividual susceptibility to ALD is substantially driven by IM. It may, therefore, be possible to prevent and manage ALD by IM manipulation.
Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
A fraction of the intestinal microbiota as precise as a single bacterial species confers infection resistance by synthesizing Clostridium difficile -inhibiting metabolites from host-derived bile salts. Gut bacteria providing resistance to Clostridium difficile Antibiotic treatment can kill many members of the normal commensal gut microbiota, leaving patients susceptible to intestinal infection. Among infections that can result from antibiotic-mediated commensal flora destruction, Clostridium difficile colitis is one of the most common and difficult to treat. Eric Pamer and colleagues screened the mouse microbiota with a panel of antibiotics and looked for distinct microbiota changes associated with susceptibility to C. difficile . They identified resistance-associated microbiota constituents common to mice and humans, including Clostridium scindens , which they show confers resistance to infection by synthesizing C. difficile -inhibiting metabolites from host-derived bile salts. These findings could point the way towards novel approaches to the treatment and prevention of C. difficile colitis such as replenishment of secondary bile acids or biosynthesis-competent bacteria as adjuncts to faecal microbiota transplants. The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens 1 . Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens 2 . Among these, Clostridium difficile , a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients 3 . Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile . Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens , a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.
The role of the microbiota in infectious diseases
The human body is colonized by a diverse community of microorganisms collectively referred to as the microbiota. Here, we describe how the human microbiota influences susceptibility to infectious diseases using examples from the respiratory, gastrointestinal and female reproductive tract. We will discuss how interactions between the host, the indigenous microbiota and non-native microorganisms, including bacteria, viruses and fungi, can alter the outcome of infections. This Review Article will highlight the complex mechanisms by which the microbiota mediates colonization resistance, both directly and indirectly, against infectious agents. Strategies for the therapeutic modulation of the microbiota to prevent or treat infectious diseases will be discussed, and we will review potential therapies that directly target the microbiota, including prebiotics, probiotics, synbiotics and faecal microbiota transplantation. This Review discusses the role of the gut, respiratory tract and vaginal microbiota in susceptibility and resistance to infectious diseases.
Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection
Antibiotics can have significant and long-lasting effects on the gastrointestinal tract microbiota, reducing colonization resistance against pathogens including Clostridium difficile . Here we show that antibiotic treatment induces substantial changes in the gut microbial community and in the metabolome of mice susceptible to C. difficile infection. Levels of secondary bile acids, glucose, free fatty acids and dipeptides decrease, whereas those of primary bile acids and sugar alcohols increase, reflecting the modified metabolic activity of the altered gut microbiome. In vitro and ex vivo analyses demonstrate that C. difficile can exploit specific metabolites that become more abundant in the mouse gut after antibiotics, including the primary bile acid taurocholate for germination, and carbon sources such as mannitol, fructose, sorbitol, raffinose and stachyose for growth. Our results indicate that antibiotic-mediated alteration of the gut microbiome converts the global metabolic profile to one that favours C. difficile germination and growth. Antibiotics alter the intestinal microbiota and facilitate colonization of pathogens such as Clostridium difficile . Here, the authors show that antibiotic-induced shifts in the mouse gut microbiome are correlated with changes in levels of certain metabolites that C. difficile can use for germination and growth.
Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria
The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.
The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility
Sex differences in immunity are well described in the literature and thought to be mainly driven by sex hormones and sex-linked immune response genes. The gastrointestinal tract (GIT) is one of the largest immune organs in the body and contains multiple immune cells in the GIT-associated lymphoid tissue, Peyer’s patches and elsewhere, which together have profound effects on local and systemic inflammation. The GIT is colonised with microbial communities composed of bacteria, fungi and viruses, collectively known as the GIT microbiota. The GIT microbiota drives multiple interactions locally with immune cells that regulate the homeostatic environment and systemically in diverse tissues. It is becoming evident that the microbiota differs between the sexes, both in animal models and in humans, and these sex differences often lead to sex-dependent changes in local GIT inflammation, systemic immunity and susceptibility to a range of inflammatory diseases. The sexually dimorphic microbiome has been termed the ‘microgenderome’. Herein, we review the evidence for the microgenderome and contemplate the role it plays in driving sex differences in immunity and disease susceptibility. We further consider the impact that biological sex might play in the response to treatments aimed at manipulating the GIT microbiota, such as prebiotics, live biotherapeutics, (probiotics, synbiotics and bacteriotherapies) and faecal microbial transplant. These alternative therapies hold potential in the treatment of both psychological (e.g., anxiety, depression) and physiological (e.g., irritable bowel disease) disorders differentially affecting males and females.
ABO Blood Types and COVID-19: Spurious, Anecdotal, or Truly Important Relationships? A Reasoned Review of Available Data
Since the emergence of COVID-19, many publications have reported associations with ABO blood types. Despite between-study discrepancies, an overall consensus has emerged whereby blood group O appears associated with a lower risk of COVID-19, while non-O blood types appear detrimental. Two major hypotheses may explain these findings: First, natural anti-A and anti-B antibodies could be partially protective against SARS-CoV-2 virions carrying blood group antigens originating from non-O individuals. Second, O individuals are less prone to thrombosis and vascular dysfunction than non-O individuals and therefore could be at a lesser risk in case of severe lung dysfunction. Here, we review the literature on the topic in light of these hypotheses. We find that between-study variation may be explained by differences in study settings and that both mechanisms are likely at play. Moreover, as frequencies of ABO phenotypes are highly variable between populations or geographical areas, the ABO coefficient of variation, rather than the frequency of each individual phenotype is expected to determine impact of the ABO system on virus transmission. Accordingly, the ABO coefficient of variation correlates with COVID-19 prevalence. Overall, despite modest apparent risk differences between ABO subtypes, the ABO blood group system might play a major role in the COVID-19 pandemic when considered at the population level.
Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations
Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd. We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis.
Structural variation in the gut microbiome associates with host health
Differences in the presence of even a few genes between otherwise identical bacterial strains may result in critical phenotypic differences. Here we systematically identify microbial genomic structural variants (SVs) and find them to be prevalent in the human gut microbiome across phyla and to replicate in different cohorts. SVs are enriched for CRISPR-associated and antibiotic-producing functions and depleted from housekeeping genes, suggesting that they have a role in microbial adaptation. We find multiple associations between SVs and host disease risk factors, many of which replicate in an independent cohort. Exploring genes that are clustered in the same SV, we uncover several possible mechanistic links between the microbiome and its host, including a region in Anaerostipes hadrus that encodes a composite inositol catabolism-butyrate biosynthesis pathway, the presence of which is associated with lower host metabolic disease risk. Overall, our results uncover a nascent layer of variability in the microbiome that is associated with microbial adaptation and host health. The authors systematically characterize structural variation in the genomes of gut microbiota and show that they are associated with bacterial fitness and with host risk factors, and that examining genes coded in these regions facilitates investigation of mechanisms that may underlie these associations.
Crohn's Disease-Associated Adherent-Invasive Escherichia coli Adhesion Is Enhanced by Exposure to the Ubiquitous Dietary Polysaccharide Maltodextrin
Crohn's disease (CD) is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC) strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20(th) century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX), a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes and contribute to disease susceptibility.