Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
44,971
result(s) for
"Disease susceptibility"
Sort by:
Air Pollution and Mortality at the Intersection of Race and Social Class
by
Wu, Xiao
,
Josey, Kevin P.
,
Delaney, Scott W.
in
Aged
,
Air Pollutants - adverse effects
,
Air Pollutants - analysis
2023
In this large study, the mortality benefits of reducing levels of fine particulate matter air pollution were greater for low-income and higher-income Black persons and for low-income White persons than for higher-income White persons.
Journal Article
Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations
2016
Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd. We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis.
Journal Article
Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection
2020
Raccoon dogs might have been intermediate hosts for severe acute respiratory syndrome-associated coronavirus in 2002-2004. We demonstrated susceptibility of raccoon dogs to severe acute respiratory syndrome coronavirus 2 infection and transmission to in-contact animals. Infected animals had no signs of illness. Virus replication and tissue lesions occurred in the nasal conchae.
Journal Article
ABO Blood Types and COVID-19: Spurious, Anecdotal, or Truly Important Relationships? A Reasoned Review of Available Data
by
Dion, Michel
,
Rocher, Jézabel
,
Pendu, Jacques Le
in
ABO blood groups
,
ABO Blood-Group System - blood
,
attack rate
2021
Since the emergence of COVID-19, many publications have reported associations with ABO blood types. Despite between-study discrepancies, an overall consensus has emerged whereby blood group O appears associated with a lower risk of COVID-19, while non-O blood types appear detrimental. Two major hypotheses may explain these findings: First, natural anti-A and anti-B antibodies could be partially protective against SARS-CoV-2 virions carrying blood group antigens originating from non-O individuals. Second, O individuals are less prone to thrombosis and vascular dysfunction than non-O individuals and therefore could be at a lesser risk in case of severe lung dysfunction. Here, we review the literature on the topic in light of these hypotheses. We find that between-study variation may be explained by differences in study settings and that both mechanisms are likely at play. Moreover, as frequencies of ABO phenotypes are highly variable between populations or geographical areas, the ABO coefficient of variation, rather than the frequency of each individual phenotype is expected to determine impact of the ABO system on virus transmission. Accordingly, the ABO coefficient of variation correlates with COVID-19 prevalence. Overall, despite modest apparent risk differences between ABO subtypes, the ABO blood group system might play a major role in the COVID-19 pandemic when considered at the population level.
Journal Article
Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk
by
Miller, Gregory E
,
Rabin, Bruce S
,
Janicki-Deverts, Denise
in
Adult
,
Biological Sciences
,
blood
2012
We propose a model wherein chronic stress results in glucocorticoid receptor resistance (GCR) that, in turn, results in failure to down-regulate inflammatory response. Here we test the model in two viral-challenge studies. In study 1, we assessed stressful life events, GCR, and control variables including baseline antibody to the challenge virus, age, body mass index (BMI), season, race, sex, education, and virus type in 276 healthy adult volunteers. The volunteers were subsequently quarantined, exposed to one of two rhinoviruses, and followed for 5 d with nasal washes for viral isolation and assessment of signs/symptoms of a common cold. In study 2, we assessed the same control variables and GCR in 79 subjects who were subsequently exposed to a rhinovirus and monitored at baseline and for 5 d after viral challenge for the production of local (in nasal secretions) proinflammatory cytokines (IL-1β, TNF-α, and IL-6). Study 1: After covarying the control variables, those with recent exposure to a long-term threatening stressful experience demonstrated GCR; and those with GCR were at higher risk of subsequently developing a cold. Study 2: With the same controls used in study 1, greater GCR predicted the production of more local proinflammatory cytokines among infected subjects. These data provide support for a model suggesting that prolonged stressors result in GCR, which, in turn, interferes with appropriate regulation of inflammation. Because inflammation plays an important role in the onset and progression of a wide range of diseases, this model may have broad implications for understanding the role of stress in health.
Journal Article
Host susceptibility to severe influenza A virus infection
2019
Most people exposed to a new flu virus do not notice any symptoms. A small minority develops critical illness. Some of this extremely broad variation in susceptibility is explained by the size of the initial inoculum or the influenza exposure history of the individual; some is explained by generic host factors, such as frailty, that decrease resilience following any systemic insult. Some demographic factors (pregnancy, obesity, and advanced age) appear to confer a more specific susceptibility to severe illness following infection with influenza viruses. As with other infectious diseases, a substantial component of susceptibility is determined by host genetics. Several genetic susceptibility variants have now been reported with varying levels of evidence. Susceptible hosts may have impaired intracellular controls of viral replication (e.g. IFITM3, TMPRS22 variants), defective interferon responses (e.g. GLDC, IRF7/9 variants), or defects in cell-mediated immunity with increased baseline levels of systemic inflammation (obesity, pregnancy, advanced age). These mechanisms may explain the prolonged viral replication reported in critically ill patients with influenza: patients with life-threatening disease are, by definition, abnormal hosts. Understanding these molecular mechanisms of susceptibility may in the future enable the design of host-directed therapies to promote resilience.
Journal Article
Ducks Are Susceptible to Infection with a Range of Doses of H5N8 Highly Pathogenic Avian Influenza Virus (2016, Clade 2.3.4.4b) and Are Largely Resistant to Virus-Specific Mortality, but Efficiently Transmit Infection to Contact Turkeys
2019
Widespread H5N8 highly pathogenic avian influenza virus (HPAIV; clade 2.3.4.4b) infections occurred in wild birds and poultry across Europe during winter 2016–17. Four different doses of H5N8 HPAIV (A/wigeon/Wales/052833/2016 [wg-Wal-16]) were used to infect 23 Pekin ducks divided into four separate pens, with three contact turkeys introduced for cohousing per pen at 1 day postinfection (dpi). All doses resulted in successful duck infection, with four sporadic mortalities recorded among the 23 (17%) infected ducks, which appeared unrelated to the dose. The ducks transmitted wg-Wal-16 efficiently to the contact turkeys; all 12 (100%) turkeys died. Systemic viral dissemination was detected in multiple organs in two duck mortalities, with limited viral dissemination in another duck, which died after resolution of shedding. Systemic viral tropism was observed in two of the turkeys. The study demonstrated the utility of Pekin ducks as surrogates of infected waterfowl to model the wild bird/gallinaceous poultry interface for introduction of H5N8 HPAIV into terrestrial poultry, where contact turkeys served as a susceptible host. Detection of H5N8-specific antibody up to 58 dpi assured the value of serologic surveillance in farmed ducks by hemagglutination inhibition and anti-nucleoprotein ELISAs.
Journal Article
Macroecology of birds potentially susceptible to West Nile virus
by
Rico-Chávez, Oscar
,
García-Peña, Gabriel E.
,
Roche, Benjamin
in
Animals
,
Bird Diseases - epidemiology
,
Bird Diseases - mortality
2018
Zoonotic diseases transmitted by wildlife affect biological conservation, public and animal health, and the economy. Current research efforts are aimed at finding wildlife pathogens at a given location. However, a meta-analytical approach may reveal emerging macroecological patterns in the host–pathogen relationship at different temporal and spatial scales. West Nile virus (WNV) is a pathogen with worldwide detrimental impacts on bird populations. To understand macroecological patterns driving WNV infection, we aimed to recognize unknown competent reservoirs using three disease metrics—serological prevalence (SP), molecular prevalence (MP) and mortality (M)—and test if these metrics are correlated with the evolutionary history, geographical origin of bird species, viral strain, time–space and methodology. We performed a quantitative review of field studies on birds sampled for WNV. We obtained 4945 observations of 949 species from 39 countries. Our analysis supported the idea that MP and M are good predictors of reservoir competence, and allowed us to identify potential competent reservoirs. Furthermore, results indicated that the variability of these metrics was attributable to phylogeny, time–space and sample size. A macroecological approach is needed to recognize susceptible species and competent reservoirs, and to identify other factors driving zoonotic diseases originating from wildlife.
Journal Article
Inflammation in epileptogenesis after traumatic brain injury
by
O’Brien, Terence J.
,
Shultz, Sandy R.
,
Semple, Bridgette D.
in
Animals
,
Bias
,
Biomedical and Life Sciences
2017
Background
Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures.
Body
We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients.
Conclusion
Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.
Journal Article
How sex and age affect immune responses, susceptibility to infections, and response to vaccination
by
Lepperdinger, Gunter
,
Giefing-Kroll, Carmen
,
Grubeck-Loebenstein, Beatrix
in
Hormones
,
Immune system
,
Infectious diseases
2015
Summary Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions.
Journal Article