Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,506
result(s) for
"Dissolution test"
Sort by:
Characterization of Five Collagenous Biomaterials by SEM Observations, TG-DTA, Collagenase Dissolution Tests and Subcutaneous Implantation Tests
by
Taira, Masayuki
,
Kihara, Hidemichi
,
Takafuji, Kyoko
in
Amino acids
,
Biodegradation
,
Biomedical materials
2022
Collagenous biomaterials that are clinically applied in dentistry have dermis-type and membrane-type, both of which are materials for promoting bone and soft tissue formation. The properties of materials supplied with different types could affect their biodegradation periods. The purpose of this study was to characterize five of these products by four different methods: scanning electron microscopy (SEM) observation, thermogravimetry-differential thermal analysis (TG-DTA), 0.01 wt% collagenase dissolution test, and subcutaneous implantation test in vivo. SEM micrographs revealed that both dermis and membranous materials were fibrous and porous. The membranous materials had higher specific derivative thermal gravimetry (DTG) peak temperatures in TG-DTA at around 320 °C, longer collagenase dissolution time ranging from about 300 to 500 min, and more longevity in mice exceeding 9 weeks than the dermis materials. There existed a correlation between the peak temperature in TG-DTA and the collagenase dissolution time. It was considered that higher cross-link degree among collagen fibrils of the membrane-type collagenous materials might account for these phenomena. The experimental protocol and numerical results obtained could be helpful for selection and future development of fibrous collagenous biomaterials in clinical use.
Journal Article
Inhibition of Liquid–Liquid Phase Separation for Breaking the Solubility Barrier of Amorphous Solid Dispersions to Improve Oral Absorption of Naftopidil
by
Nishida, Yohei
,
Matsuda, Maki
,
Oikawa, Michinori
in
Adrenergic alpha blockers
,
amorphous
,
Amorphous substances
2022
Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 (Eudragit) to improve the dissolution and oral absorption behaviors of NFT. During the dissolution process of ASD, liquid–liquid phase separation (LLPS) may occur when certain requirements are met for providing a maximum quasi-stable concentration achievable by amorphization. The occurrence of LLPS was confirmed in the presence of PVPVA and HPMCAS; however, Eudragit inhibited LLPS owing to its molecular interaction with NFT. Although the dissolution behavior of the Eudragit ASD was found to be markedly poorer than that of other ASDs, it offered the best oral absorption in rats. The findings of the current study highlight the possibility for improving the oral absorption of poorly soluble drugs by this ASD, which should be eliminated from candidate formulations based on the conventional in vitro tests.
Journal Article
Measurement uncertainty of dissolution test of acetaminophen immediate release tablets using Monte Carlo simulations
by
Lourenço, Felipe Rebello
,
Romero, Daniel Cancelli
in
Acetaminophen tablets/dissolution test/measurement uncertainty
,
Algorithms
,
Analgesics
2017
Analytical results are widely used to assess batch-by-batch conformity, pharmaceutical equivalence, as well as in the development of drug products. Despite this, few papers describing the measurement uncertainty estimation associated with these results were found in the literature. Here, we described a simple procedure used for estimating measurement uncertainty associated with the dissolution test of acetaminophen tablets. A fractionate factorial design was used to define a mathematical model that explains the amount of acetaminophen dissolved (%) as a function of time of dissolution (from 20 to 40 minutes), volume of dissolution media (from 800 to 1000 mL), pH of dissolution media (from 2.0 to 6.8), and rotation speed (from 40 to 60 rpm). Using Monte Carlo simulations, we estimated measurement uncertainty for dissolution test of acetaminophen tablets (95.2 ± 1.0%), with a 95% confidence level. Rotation speed was the most important source of uncertainty, contributing about 96.2% of overall uncertainty. Finally, it is important to note that the uncertainty calculated in this paper reflects the expected uncertainty to the dissolution test, and does not consider variations in the content of acetaminophen.
Journal Article
Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms
by
Reppas, Christos
,
Amidon, Gordon L.
,
Shah, Vinod P.
in
Administration, Oral
,
Biological and medical sciences
,
Digestive System - chemistry
1998
Dissolution tests are used for many purposes in the pharmaceutical industry: in the development of new products, for quality control and, to assist with the determination of bioequivalence. Recent regulatory developments such as the Biopharmaceutics Classification Scheme have highlighted the importance of dissolution in the regulation of post-approval changes and introduced the possibility of substituting dissolution tests for clinical studies in some cases. Therefore, there is a need to develop dissolution tests that better predict the in vivo performance of drug products. This could be achieved if the conditions in the gastrointestinal tract were successfully reconstructed in vitro. The aims of this article are, first, to clarify under which circumstances dissolution testing can be prognostic for in vivo performance, and second, to present physiological data relevant to the design of dissolution tests, particularly with respect to the composition, volume, flow rates and mixing patterns of the fluids in the gastrointestinal tract. Finally, brief comments are made in regard to the composition of in vitro dissolution media as well as the hydrodynamics and duration of the test.
Journal Article
Development and Application of Carbonate Dissolution Test Equipment under Thermal–Hydraulic–Chemical Coupling Condition
2022
The latest continuous flow micro reaction technology was adopted to independently develop carbonate rock dissolution test equipment. Carbonate rock dissolution tests were conducted under different temperatures, flow rates, and dynamic water pressure conditions to study the dissolution process of carbonate rocks under the coupling of heat-water-chemistry. The dissolution effect and development law of carbonate rocks were explored by quantitatively studying carbonate rock dissolution rate and chemical composition of karst water. The results showed that the self-designed dissolution test equipment has obvious advantages. After dissolution, carbonate rock specimens were damaged to varying degrees. The dissolution rate was proportional to water velocity and hydrodynamic pressure, with the velocity effect being greater than the hydrodynamic pressure effect. The pH value, conductivity, and Ca2+ ion content of the reaction solution gradually increased after dissolution. The development and application of the equipment have proved that, at low dynamic water pressures (2 MPa), the water flow velocity effect on the dissolution velocity was 1.5 times that when the dynamic water pressure was high (6 MPa); at a low water flow velocity of 15 mL/min, the dynamic water pressure effect on the dissolution velocity was three times that when the water flow velocity was high (75 mL/min). The development process is gradually becoming strong and stable. Its research has important theoretical significance and engineering application value to provide technical means and guarantee for the early identification, karst development, and safety evaluation of karst geological disasters.
Journal Article
Dissolution Kinetics of Nifedipine—Ionizable Polymer Amorphous Solid Dispersion: Comparison Between Bicarbonate and Phosphate Buffers
2021
PurposeThe intestinal fluid pH is maintained by the bicarbonate buffer system that shows unique properties regarding drug dissolution. Nevertheless, current compendial dissolution tests use phosphate buffers. The purpose of the present study was to investigate the effect of bicarbonate and phosphate buffers on the dissolution profiles of amorphous solid dispersions (ASD) composed of ionizable polymers.MethodsHydroxypropylmethylcellulose acetate succinate (HPMCAS), amino methacrylate copolymer (AMC), and hydroxypropylmethylcellulose (HPMC) were employed as acidic, basic, and neutral polymers, respectively. Nifedipine (NIF) was used as a model drug. Dissolution profiles were measured in pH 6.5 bicarbonate and phosphate buffers by a mini-scale paddle dissolution test. The pH of bicarbonate buffers was maintained by the floating lid method.ResultsThe pH change of the bicarbonate buffer was suppressed to less than + 0.25 pH for 3 h by the floating lid method. In all cases, the NIF concentration was supersaturated against the solubility of crystalline NIF. The dissolution rates of HPMCAS and AMC ASDs were 1.5 to 2.0-fold slower in the bicarbonate buffer than in the phosphate buffer when compared at the same buffer capacity. The dissolution profile of HPMC ASD was not affected by the buffer species. The higher the buffer capacity and ionic strength, the faster the dissolution rate of HPMCAS ASD.ConclusionThe dissolution rate of ASDs with ionizable polymers would be overestimated by using unphysiological phosphate buffer solutions. It is important to use a biorelevant bicarbonate buffer solution for dissolution testing.
Journal Article
Medicine quality assessment in Nepal using semi randomised sampling and evaluation of a small scale dissolution test and portable Raman spectrometers
2025
Substandard and falsified medicines threaten global health and require reliable data and screening technologies to combat their spread. This study examined the quality of 241 samples containing azithromycin, cefixime, esomeprazole and losartan collected from licenced private vendors in the Saptari (121 samples; convenience sampling) and Kathmandu (120 samples; randomised sampling) districts of Nepal. Nearly 10% (24 samples; 95% CI 6.5–14.5) of samples failed pharmacopoeial quality analysis and were classified as ‘substandard’ or ‘probably substandard’. No falsified medicines were identified. Small-scale dissolution acceptance criteria were applied to all 20 three-unit combinations of 213 samples tested in the first stage of the United States Pharmacopoeia dissolution test. Approximately 1% of these results were false positives when compared with the final United States Pharmacopoeia dissolution test results, suggesting the test’s usefulness in encouraging dissolution testing in resource-limited contexts. In the narrow sense of presence/absence, two portable Raman spectrometers reliably detected azithromycin, cefixime and losartan in most samples based on effective methods for detecting falsified medicines; however, none of the substandard samples were identified. The findings suggest that falsified medicines are less prevalent in Nepal and the surrounding region than suggested by regional concerns about Nepal and global concerns about low- and middle-income countries. Nevertheless, the Nepalese government should continue to ensure the quality of all distributed medicines.
Journal Article
In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances
by
Chavan, Salonee
,
Nokhodchi, Ali
,
Ghafourian, Taravat
in
Chemical properties
,
Design
,
Dissolution (Chemistry)
2023
In vitro dissolution and permeability testing aid the simulation of the in vivo behavior of inhalation drug products. Although the regulatory bodies have specific guidelines for the dissolution of orally administered dosage forms (e.g., tablets and capsules), this is not the case for orally inhaled formulations, as there is no commonly accepted test for assessing their dissolution pattern. Up until a few years ago, there was no consensus that assessing the dissolution of orally inhaled drugs is a key factor in the assessment of orally inhaled products. With the advancement of research in the field of dissolution methods for orally inhaled products and a focus on systemic delivery of new, poorly water-soluble drugs at higher therapeutic doses, an evaluation of dissolution kinetics is proving crucial. Dissolution and permeability testing can determine the differences between the developed formulations and the innovator’s formulations and serve as a useful tool in correlating in vitro and in vivo studies. The current review highlights recent advances in the dissolution and permeability testing of inhalation products and their limitations, including recent cell-based technology. Although a few new dissolution and permeability testing methods have been established that have varying degrees of complexity, none have emerged as the standard method of choice. The review discusses the challenges of establishing methods that can closely simulate the in vivo absorption of drugs. It provides practical insights into method development for various dissolution testing scenarios and challenges with dose collection and particle deposition from inhalation devices for dissolution tests. Furthermore, dissolution kinetic models and statistical tests to compare the dissolution profiles of test and reference products are discussed.
Journal Article
3D Printed Microfluidic Devices for Drug Release Assays
by
Amoyav, Benzion
,
Benny, Ofra
,
Steinberg, Eliana
in
3D printing
,
chip manufacturing
,
dissolution test
2020
Microfluidics research for various applications, including drug delivery, cell-based assays and biomedical research has grown exponentially. Despite this technology’s enormous potential, drawbacks include the need for multistep fabrication, typically with lithography. We present a one-step fabrication process of a microfluidic chip for drug dissolution assays based on a 3D printing technology. Doxorubicin porous and non-porous microspheres, with a mean diameter of 250µm, were fabricated using a conventional “batch” or microfluidic method, based on an optimized solid-in-oil-in-water protocol. Microspheres fabricated with microfluidics system exhibited higher encapsulation efficiency and drug content as compared with batch formulations. We determined drug release profiles of microspheres in varying pH conditions using two distinct dissolution devices that differed in their mechanical barrier structures. The release profile of the “V” shape barrier was similar to that of the dialysis sac test and differed from the “basket” barrier design. Importantly, a cytotoxicity test confirmed biocompatibility of the printed resin. Finally, the chip exhibited high durability and stability, enabling multiple recycling sessions. We show how the combination of microfluidics and 3D printing can reduce costs and time, providing an efficient platform for particle production while offering a feasible cost-effective alternative to clean-room facility polydimethylsiloxane-based chip microfabrication.
Journal Article