Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
6,827
result(s) for
"Distributed generation (Electric power)"
Sort by:
Simultaneous costs minimizing in electricity and gas micro-grids with the presence of distributed generation
by
Kharrati, Saeed
,
Behnia, Shahryar
,
Khosravi, Farshad
in
Algorithms
,
Alternative energy sources
,
Biogas
2024
Distributed generation can actively participate in the day-ahead markets, real-time power balance, and wholesale gas markets to achieve various goals, such as supplying gas to various electric power generation plants. A multi-objective network with two types of loads is considered in this paper. The reason for the simultaneous optimization of these two networks is that these two energy carriers are dependent on each other and gas is needed to produce electricity, so this issue can be addressed with a multi-objective function. The simulation carried out in this article is coded in GAMS software as a mixed integer linear programming (MILP). The efficiency of gas turbines and fuel cells in this article is dependent on their working point, and considering the exact model of these resources and the relationships related to the calculation of their fuel consumption is non-linear. On the other hand, a binary variable has been used to show the charging and discharging state of the storage and the on-and-off state of the gas turbines. Therefore, the problem considered in this article is a MILP problem. The results of this article are the proper planning of charging and discharging of the energy storage system with the proper planning of the power generation of different energy sources considering the network loads in two optimized and non-optimized scenarios.
Journal Article
Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review
2022
For over a decade, distributed generations (DGs) have sufficiently convinced the researchers that they are the economic and environment-friendly solution that can be integrated with the centralized generations. The optimal planning of distributed generations requires the appropriate location and sizing and their corresponding control with various power network types to obtain the best of the technical, economical, commercial, and regulatory objectives. Most of these objectives are conflicting in nature and require multi-objective solutions. Therefore, this paper brings a comprehensive literature review and a critical analysis of the state of the art of the optimal multi-objective planning of DG installation in the power network with different objective functions and their constraints. The paper considers the adoption of optimization techniques for distributed generation planning in radial distribution systems from different power system performance viewpoints; it considers the use of different DG types, distribution models, DG variables, and mathematical formulations; and it considers the participation of different countries in the stated DG placement and sizing problem. Moreover, the summary of the literature review and critical analysis of this article helps the researchers and engineers to explore the research gap and to find the future recommendations for the robust optimal planning of the DGs working with various objectives and algorithms. The paper considers the adoption of uncertainties on the load and generation side, the introduction of DGs with energy storage backups, and the testing of DG placement and sizing on large and complex distribution networks.
Journal Article
Comprehensive review of generation and transmission expansion planning
by
Khodabakhshian, Amin
,
Hemmati, Reza
,
Hooshmand, Rahmat-Allah
in
Applied sciences
,
demand side management
,
distributed generation
2013
Investment on generation system and transmission network is an important issue in power systems, and investment reversibility closely depends on performing an optimal planning. In this regard, generation expansion planning (GEP) and transmission expansion planning (TEP) have been presented by researchers to manage an optimal planning on generation and transmission systems. In recent years, a large number of research works have been carried out on GEP and TEP. These problems have been investigated with different views, methods, constraints and objectives. The evaluation of researches in these fields and categorising their different aspects are necessary to manage further works. This study presents a comprehensive review of GEP and TEP problems from different aspects and views such as modelling, solving methods, reliability, distributed generation, electricity market, uncertainties, line congestion, reactive power planning, demand-side management and so on. The review results provide a comprehensive background to find out further ideas in these fields.
Journal Article
Vendor and User Requirements and Responsibilities in Nuclear Cogeneration Projects
by
IAEA
in
Cogeneration of electric power and heat
,
Nuclear power plants
,
Total energy systems (On-site electric power production)
2023
Nuclear cogeneration to produce electricity and process heat for nonelectric applications such as desalination, district heating or cooling or hydrogen production can play an important role in reducing dependence on fossil fuels. The implementation of nuclear cogeneration projects is inherently complex and such projects require a clear understanding of actions and responsibilities during the design, operation and management phases. This publication focuses on analysing the requirements and responsibilities of users and vendors and correspondence between them through the life cycle to of a nuclear cogeneration project, highlighting experience and lessons learned from retrofit and new build projects.
Handbook of Distributed Generation
2017
This book features extensive coverage of all Distributed Energy Generation technologies, highlighting the technical, environmental and economic aspects of distributed resource integration, such as line loss reduction, protection, control, storage, power electronics, reliability improvement, and voltage profile optimization. It explains how electric power system planners, developers, operators, designers, regulators and policy makers can derive many benefits with increased penetration of distributed generation units into smart distribution networks. It further demonstrates how to best realize these benefits via skillful integration of distributed energy sources, based upon an understanding of the characteristics of loads and network configuration.
Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bio-inspired optimization algorithms
2020
Purpose
The increase in plug-in electric vehicles (PEVs) is likely to see a noteworthy impact on the distribution system due to high electric power consumption during charging and uncertainty in charging behavior. To address this problem, the present work mainly focuses on optimal integration of distributed generators (DG) into radial distribution systems in the presence of PEV loads with their charging behavior under daily load pattern including load models by considering the daily (24 h) power loss and voltage improvement of the system as objectives for better system performance.
Design/methodology/approach
To achieve the desired outcomes, an efficient weighted factor multi-objective function is modeled. Particle Swarm Optimization (PSO) and Butterfly Optimization (BO) algorithms are selected and implemented to minimize the objectives of the system. A repetitive backward-forward sweep-based load flow has been introduced to calculate the daily power loss and bus voltages of the radial distribution system. The simulations are carried out using MATLAB software.
Findings
The simulation outcomes reveal that the proposed approach definitely improved the system performance in all aspects. Among PSO and BO, BO is comparatively successful in achieving the desired objectives.
Originality/value
The main contribution of this paper is the formulation of the multi-objective function that can address daily active power loss and voltage deviation under 24-h load pattern including grouping of residential, industrial and commercial loads. Introduction of repetitive backward-forward sweep-based load flow and the modeling of PEV load with two different charging scenarios.
Journal Article