Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
58,597 result(s) for "Distribution (mathematics)"
Sort by:
Power Definitions and the Physical Mechanism of Power Flow
Professor Emanuel uses clear presentation to compare and facilitate understanding of two seminal standards, The IEEE Std. 1459 and The DIN 40110-2:2002-11. Through critical analysis of the most important and recent theories and review of basic concepts, a highly accessible guide to the essence of the standards is presented. <p><b>Key features:</b></p> <ul> <li>Explains the physical mechanism of energy flow under different conditions: single- and three-phase, sinusoidal and nonsinusoidal, balanced and unbalanced systems</li> <li>Starts at an elementary level and becomes more complex, with six core chapters and six appendices to clarify the mathematical aspects</li> <li>Discusses and recommends power definitions that played a significant historical role in paving the road for the two standards</li> <li>Provides a number of original unsolved problems at the end of each chapter</li> <li>Introduces a new nonactive power; the Randomness power.</li> </ul> <p><i>Power Definitions and the Physical Mechanism of Power Flow</i> is useful for electrical engineers and consultants involved in energy and power quality. It is also helpful to engineers dealing with energy flow quantification, design and manufacturing of metering instrumentation; consultants working with regulations related to renewable energy courses and the smart grid; and electric utility planning and operation engineers dealing with energy bill structure. The text is also relevant to university researchers, professors, and advanced students in power systems, power quality and energy related courses.</p>
Thermodynamics
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics. The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth. This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.
Elliptic partial differential equations and quasiconformal mappings in the plane (princeton mathematical series)
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Introduction to distribution logistics
unique introduction to distribution logistics that focuses on both quantitative modeling and practical business issues Introduction to Distribution Logistics presents a complete and balanced treatment of distribution logistics by covering both applications and the required theoretical background, therefore extending its reach to practitioners and students in a range of disciplines such as management, engineering, mathematics, and statistics. The authors emphasize the variety and complexity of issues and sub-problems surrounding distribution logistics as well as the limitations and scope of applicability of the proposed quantitative tools. Throughout the book, readers are provided with the quantitative approaches needed to handle real-life management problems, and areas of study include: Supply chain management Network design and transportation Demand forecasting Inventory control in single- and multi-echelon systems Incentives in the supply chain Vehicle routing Complete with extensive appendices on probability and statistics as well as mathematical programming, Introduction to Distribution Logistics is a valuable text for distribution logistics courses at both the advanced undergraduate and beginning graduate levels in a variety of disciplines, and prior knowledge of production planning is not assumed. The book also serves as a useful reference for practitioners in the fields of applied mathematics and statistics, manufacturing engineering, business management, and operations research. The book's related Web site includes additional sections and numerical illustrations.
Diffusion, quantum theory, and radically elementary mathematics. (MN-47)
Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein's work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book's inspiration is Princeton University mathematics professor Edward Nelson's influential work in probability, functional analysis, nonstandard analysis, stochastic mechanics, and logic. The book can be used as a tutorial or reference, or read for pleasure by anyone interested in the role of mathematics in science. Because of the application of diffusive motion to quantum theory, it will interest physicists as well as mathematicians. The introductory chapter describes the interrelationships between the various themes, many of which were first brought to light by Edward Nelson. In his writing and conversation, Nelson has always emphasized and relished the human aspect of mathematical endeavor. In his intellectual world, there is no sharp boundary between the mathematical, the cultural, and the spiritual. It is fitting that the final chapter provides a mathematical perspective on musical theory, one that reveals an unexpected connection with some of the book's main themes.