Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
902
result(s) for
"Dolphins - physiology"
Sort by:
Behavioural Effects of Tourism on Oceanic Common Dolphins, Delphinus sp., in New Zealand: The Effects of Markov Analysis Variations and Current Tour Operator Compliance with Regulations
by
Christiansen, Fredrik
,
Meissner, Anna M.
,
Stockin, Karen A.
in
Animal behavior
,
Animals
,
Aquatic mammals
2015
Common dolphins, Delphinus sp., are one of the marine mammal species tourism operations in New Zealand focus on. While effects of cetacean-watching activities have previously been examined in coastal regions in New Zealand, this study is the first to investigate effects of commercial tourism and recreational vessels on common dolphins in an open oceanic habitat. Observations from both an independent research vessel and aboard commercial tour vessels operating off the central and east coast Bay of Plenty, North Island, New Zealand were used to assess dolphin behaviour and record the level of compliance by permitted commercial tour operators and private recreational vessels with New Zealand regulations. Dolphin behaviour was assessed using two different approaches to Markov chain analysis in order to examine variation of responses of dolphins to vessels. Results showed that, regardless of the variance in Markov methods, dolphin foraging behaviour was significantly altered by boat interactions. Dolphins spent less time foraging during interactions and took significantly longer to return to foraging once disrupted by vessel presence. This research raises concerns about the potential disruption to feeding, a biologically critical behaviour. This may be particularly important in an open oceanic habitat, where prey resources are typically widely dispersed and unpredictable in abundance. Furthermore, because tourism in this region focuses on common dolphins transiting between adjacent coastal locations, the potential for cumulative effects could exacerbate the local effects demonstrated in this study. While the overall level of compliance by commercial operators was relatively high, non-compliance to the regulations was observed with time restriction, number or speed of vessels interacting with dolphins not being respected. Additionally, prohibited swimming with calves did occur. The effects shown in this study should be carefully considered within conservation management plans, in order to reduce the risk of detrimental effects on common dolphins within the region.
Journal Article
Hybridization in the wild between Tursiops truncatus (Montagu 1821) and Delphinus delphis (Linnaeus 1758)
by
Haasova, Luisa
,
Olaya Ponzone, Liliana
,
Espada, Rocío
in
Animal behavior
,
Animals
,
Aquatic mammals
2019
A case of intergeneric hybridization in the wild between a female bottlenose dolphin (Tursiops truncatus) and a short-beaked common dolphin (Delphinus delphis), considered members of 'vulnerable' and 'endangered' subpopulations in the Mediterranean, respectively, by the International Union of Conservation of Nature is described in this paper. The birth of the hybrid was registered in the Bay of Algeciras (southern Spain) in August 2016, and the animal has been tracked on frequent trips aboard dolphin-watching platforms. This unique occurrence is the result of an apparent ongoing interaction (10 years) between a female bottlenose dolphin and common dolphins. The calf has a robust body with length similar to Tursiops, while its lateral striping and coloration are typical of Delphinus. It displays the common dolphin's 'criss-cross' pattern. However, the thoracic patch is lighter than in D. delphis and its dorsal area is light grey, with a 'V' shape under the dorsal fin. This paper also provides a comprehensive mini-review of hybridizations of T. truncatus with other species.
Journal Article
Multiclass CNN Approach for Automatic Classification of Dolphin Vocalizations
by
De Marco, Rocco
,
Li Veli, Daniel
,
Lucchetti, Alessandro
in
Acoustics
,
Algorithms
,
Animal vocalization
2025
Monitoring dolphins in the open sea is essential for understanding their behavior and the impact of human activities on the marine ecosystems. Passive Acoustic Monitoring (PAM) is a non-invasive technique for tracking dolphins, providing continuous data. This study presents a novel approach for classifying dolphin vocalizations from a PAM acoustic recording using a convolutional neural network (CNN). Four types of common bottlenose dolphin (Tursiops truncatus) vocalizations were identified from underwater recordings: whistles, echolocation clicks, burst pulse sounds, and feeding buzzes. To enhance classification performances, edge-detection filters were applied to spectrograms, with the aim of removing unwanted noise components. A dataset of nearly 10,000 spectrograms was used to train and test the CNN through a 10-fold cross-validation procedure. The results showed that the CNN achieved an average accuracy of 95.2% and an F1-score of 87.8%. The class-specific results showed a high accuracy for whistles (97.9%), followed by echolocation clicks (94.5%), feeding buzzes (94.0%), and burst pulse sounds (92.3%). The highest F1-score was obtained for whistles, exceeding 95%, while the other three vocalization typologies maintained an F1-score above 80%. This method provides a promising step toward improving the passive acoustic monitoring of dolphins, contributing to both species conservation and the mitigation of conflicts with fisheries.
Journal Article
A New Dolphin Species, the Burrunan Dolphin Tursiops australis sp. nov., Endemic to Southern Australian Coastal Waters
by
Charlton-Robb, Kate
,
McKechnie, Stephen
,
Thompson, Ross
in
Aboriginal Australians
,
Adaptation
,
Animals
2011
Small coastal dolphins endemic to south-eastern Australia have variously been assigned to described species Tursiops truncatus, T. aduncus or T. maugeanus; however the specific affinities of these animals is controversial and have recently been questioned. Historically 'the southern Australian Tursiops' was identified as unique and was formally named Tursiops maugeanus but was later synonymised with T. truncatus. Morphologically, these coastal dolphins share some characters with both aforementioned recognised Tursiops species, but they also possess unique characters not found in either. Recent mtDNA and microsatellite genetic evidence indicates deep evolutionary divergence between this dolphin and the two currently recognised Tursiops species. However, in accordance with the recommendations of the Workshop on Cetacean Systematics, and the Unified Species Concept the use of molecular evidence alone is inadequate for describing new species. Here we describe the macro-morphological, colouration and cranial characters of these animals, assess the available and new genetic data, and conclude that multiple lines of evidence clearly indicate a new species of dolphin. We demonstrate that the syntype material of T. maugeanus comprises two different species, one of which is the historical 'southern form of Tursiops' most similar to T. truncatus, and the other is representative of the new species and requires formal classification. These dolphins are here described as Tursiops australis sp. nov., with the common name of 'Burrunan Dolphin' following Australian aboriginal narrative. The recognition of T. australis sp. nov. is particularly significant given the endemism of this new species to a small geographic region of southern and south-eastern Australia, where only two small resident populations in close proximity to a major urban and agricultural centre are known, giving them a high conservation value and making them susceptible to numerous anthropogenic threats.
Journal Article
A Robust Design Capture-Recapture Analysis of Abundance, Survival and Temporary Emigration of Three Odontocete Species in the Gulf of Corinth, Greece
2016
While the Mediterranean Sea has been designated as a Global Biodiversity Hotspot, assessments of cetacean population abundance are lacking for large portions of the region, particularly in the southern and eastern basins. The challenges and costs of obtaining the necessary data often result in absent or poor abundance information. We applied capture-recapture models to estimate abundance, survival and temporary emigration of odontocete populations within a 2,400 km2 semi-enclosed Mediterranean bay, the Gulf of Corinth. Boat surveys were conducted in 2011-2015 to collect photo-identification data on striped dolphins Stenella coeruleoalba, short-beaked common dolphins Delphinus delphis (always found together with striped dolphins in mixed groups) and common bottlenose dolphins Tursiops truncatus, totaling 1,873 h of tracking. After grading images for quality and marking distinctiveness, 23,995 high-quality photos were included in a striped and common dolphin catalog, and 2,472 in a bottlenose dolphin catalog. The proportions of striped and common dolphins were calculated from the photographic sample and used to scale capture-recapture estimates. Best-fitting robust design capture-recapture models denoted no temporary emigration between years for striped and common dolphins, and random temporary emigration for bottlenose dolphins, suggesting different residency patterns in agreement with previous studies. Average estimated abundance over the five years was 1,331 (95% CI 1,122-1,578) striped dolphins, 22 (16-32) common dolphins, 55 (36-84) \"intermediate\" animals (potential striped x common dolphin hybrids) and 38 (32-46) bottlenose dolphins. Apparent survival was constant for striped, common and intermediate dolphins (0.94, 95% CI 0.92-0.96) and year-dependent for bottlenose dolphins (an average of 0.85, 95% CI 0.76-0.95). Our work underlines the importance of long-term monitoring to contribute reliable baseline information that can help assess the conservation status of wildlife populations.
Journal Article
Hearing Loss in Stranded Odontocete Dolphins and Whales
by
Randall S. Wells
,
Eric W. Montie
,
Abigale Stone
in
Age Factors
,
Animal behavior
,
Animal cognition
2010
The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70-90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested.
Journal Article
Social object play between captive bottlenose and Risso's dolphins
2018
Many animal species engage in social object play with movable objects. Two bottlenose dolphins (Tursiops truncatus) and one Risso's dolphin (Grampus griseus) owned by the Kujukushima Aquarium, Japan, occasionally shared and played with an object. Herein, we report social object play between two dolphins exchanging a ball in water. Just before delivery of the ball, one dolphin made an action to request the ball from the dolphin that possessed the ball. This request behavior is also discussed in this report. This study is the first to report two different cetacean species engaging in social object play with one object.
Journal Article
History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data
by
Frantzis, Alexandros
,
Öztürk, Bayram
,
Öztürk, Ayaka A
in
Animals
,
anthropogenic activities
,
Anthropogenic factors
2012
Two major ecological transitions marked the history of the Black Sea after the last Ice Age. The first was the postglacial transition from a brackish-water to a marine ecosystem dominated by porpoises and dolphins once this basin was reconnected back to the Mediterranean Sea (ca . 8,000 y B.P.). The second occurred during the past decades, when overfishing and hunting activities brought these predators close to extinction, having a deep impact on the structure and dynamics of the ecosystem. Estimating the extent of this decimation is essential for characterizing this ecosystem’s dynamics and for formulating restoration plans. However, this extent is poorly documented in historical records. We addressed this issue for one of the main Black Sea predators, the harbor porpoise, using a population genetics approach. Analyzing its genetic diversity using an approximate Bayesian computation approach, we show that only a demographic expansion (at most 5,000 y ago) followed by a contemporaneous population collapse can explain the observed genetic data. We demonstrate that both the postglacial settlement of harbor porpoises in the Black Sea and the recent anthropogenic activities have left a clear footprint on their genetic diversity. Specifically, we infer a strong population reduction (∼90%) that occurred within the past 5 decades, which can therefore clearly be related to the recent massive killing of small cetaceans and to the continuing incidental catches in commercial fisheries. Our study thus provides a quantitative assessment of these demographically catastrophic events, also showing that two separate historical events can be inferred from contemporary genetic data.
Journal Article
Efficient cruising for swimming and flying animals is dictated by fluid drag
2018
Many swimming and flying animals are observed to cruise in a narrow range of Strouhal numbers, where the Strouhal number St = 2fA/U is a dimensionless parameter that relates stroke frequency f, amplitude A, and forward speed U. Dolphins, sharks, bony fish, birds, bats, and insects typically cruise in the range 0.2 < St < 0.4, which coincides with the Strouhal number range for maximum efficiency as found by experiments on heaving and pitching airfoils. It has therefore been postulated that natural selection has tuned animals to use this range of Strouhal numbers because it confers high efficiency, but the reason why this is so is still unclear. Here, by using simple scaling arguments, we argue that the Strouhal number for peak efficiency is largely determined by fluid drag on the fins and wings.
Journal Article