Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,460 result(s) for "Dopamine Agonists - pharmacology"
Sort by:
Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents
RationaleDisorders of compulsivity such as stimulant use disorder (SUD) and obsessive-compulsive disorder (OCD) are characterised by deficits in behavioural flexibility, some of which have been captured using probabilistic reversal learning (PRL) paradigms.ObjectivesThis study used computational modelling to characterise the reinforcement learning processes underlying patterns of PRL behaviour observed in SUD and OCD and to show how the dopamine D2/3 receptor agonist pramipexole and the D2/3 antagonist amisulpride affected these responses.MethodsWe applied a hierarchical Bayesian method to PRL data across three groups: individuals with SUD, OCD, and healthy controls. Participants completed three sessions where they received placebo, pramipexole, and amisulpride, in a double-blind placebo-controlled, randomised design. We compared seven models using a bridge sampling estimate of the marginal likelihood.ResultsStimulus-bound perseveration, a measure of the degree to which participants responded to the same stimulus as before irrespective of outcome, was significantly increased in SUD, but decreased in OCD, compared to controls (on placebo). Individuals with SUD also exhibited reduced reward-driven learning, whilst both the SUD and OCD groups showed increased learning from punishment (nonreward). Pramipexole and amisulpride had similar effects on the control and OCD groups; both increased punishment-driven learning. These D2/3-modulating drugs affected the SUD group differently, remediating reward-driven learning and reducing aspects of perseverative behaviour, amongst other effects.ConclusionsWe provide a parsimonious computational account of how perseverative tendencies and reward- and punishment-driven learning differentially contribute to PRL in SUD and OCD. D2/3 agents modulated these processes and remediated deficits in SUD in particular, which may inform therapeutic effects.
Surgery as a Viable Alternative First-Line Treatment for Prolactinoma Patients. A Systematic Review and Meta-Analysis
Abstract Context The improved remission and complication rates of current transsphenoidal surgery warrant reappraisal of the position of surgery as a viable alternative to dopamine agonists in the treatment algorithm of prolactinomas. Objective To compare clinical outcomes after dopamine agonist withdrawal and transsphenoidal surgery in prolactinoma patients. Methods Eight databases were searched up to July 13, 2018. Primary outcome was disease remission after drug withdrawal or surgery. Secondary outcomes were biochemical control and side effects during dopamine agonist treatment and postoperative complications. Fixed- or random-effects meta-analysis was performed to estimate pooled proportions. Robustness of results was assessed by sensitivity analyses. Results A total of 1469 articles were screened: 55 (10 low risk of bias) on medical treatment (n = 3564 patients) and 25 (12 low risk of bias) on transsphenoidal surgery (n = 1836 patients). Long-term disease remission after dopamine agonist withdrawal was 34% (95% confidence interval [CI], 26-46) and 67% (95% CI, 60-74) after surgery. Subgroup analysis of microprolactinomas showed 36% (95% CI, 21-52) disease remission after dopamine agonist withdrawal, and 83% (95% CI, 76-90) after surgery. Biochemical control was achieved in 81% (95% CI, 75-87) of patients during dopamine agonists with side effects in 26% (95% CI, 13-41). Transsphenoidal surgery resulted in 0% mortality, 2% (95% CI, 0-5) permanent diabetes insipidus, and 3% (95% CI, 2-5) cerebrospinal fluid leakage. Multiple sensitivity analyses yielded similar results. Conclusions In the majority of prolactinoma patients, disease remission can be achieved through surgery, with low risks of long-term surgical complications, and disease remission is less often achieved with dopamine agonists.
The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment
Bipolar affective disorder is a common neuropsychiatric disorder. Although its neurobiological underpinnings are incompletely understood, the dopamine hypothesis has been a key theory of the pathophysiology of both manic and depressive phases of the illness for over four decades. The increased use of antidopaminergics in the treatment of this disorder and new in vivo neuroimaging and post-mortem studies makes it timely to review this theory. To do this, we conducted a systematic search for post-mortem, pharmacological, functional magnetic resonance and molecular imaging studies of dopamine function in bipolar disorder. Converging findings from pharmacological and imaging studies support the hypothesis that a state of hyperdopaminergia, specifically elevations in D2/3 receptor availability and a hyperactive reward processing network, underlies mania. In bipolar depression imaging studies show increased dopamine transporter levels, but changes in other aspects of dopaminergic function are inconsistent. Puzzlingly, pharmacological evidence shows that both dopamine agonists and antidopaminergics can improve bipolar depressive symptoms and perhaps actions at other receptors may reconcile these findings. Tentatively, this evidence suggests a model where an elevation in striatal D2/3 receptor availability would lead to increased dopaminergic neurotransmission and mania, whilst increased striatal dopamine transporter (DAT) levels would lead to reduced dopaminergic function and depression. Thus, it can be speculated that a failure of dopamine receptor and transporter homoeostasis might underlie the pathophysiology of this disorder. The limitations of this model include its reliance on pharmacological evidence, as these studies could potentially affect other monoamines, and the scarcity of imaging evidence on dopaminergic function. This model, if confirmed, has implications for developing new treatment strategies such as reducing the dopamine synthesis and/or release in mania and DAT blockade in bipolar depression.
Dopaminergic Modulation of Risk-Based Decision Making
Psychopharmacological studies have implicated the mesolimbic dopamine (DA) system in the mediation of cost/benefit evaluations about delay or effort-related costs associated with larger rewards. However, the role of DA in risk-based decision making remains relatively unexplored. The present study investigated the effects of systemic manipulations of DA transmission on risky choice using a probabilistic discounting task. Over discrete trials, rats chose between two levers; a press on the ‘small/certain’ lever always delivered one reward pellet, whereas a press on the other, ‘large/risky’ lever delivered four pellets, but the probability of receiving reward decreased across the four trial blocks (100, 50, 25, 12.5%). In separate groups of well-trained rats we assessed the effects of the DA releaser amphetamine, as well as receptor selective agonists and antagonists. Amphetamine consistently increased preference for the large/risky lever; an effect that was blocked or attenuated by co-administration of either D 1 (SCH23390) or D 2 (eticlopride) receptor antagonists. Blockade of either of these receptors alone induced risk aversion. Conversely, stimulation of D 1 (SKF81297) or D 2 (bromocriptine) receptors also increased risky choice. In contrast, activation of D 3 receptors with PD128,907 reduced choice of the large/risky lever. Likewise, D 3 antagonism with nafadotride potentiated the amphetamine-induced increase in risky choice. Blockade or stimulation of D 4 receptors did not reliably alter behavior. These findings indicate that DA has a critical role in mediating risk-based decision making, with increased activation of D 1 and D 2 receptors biasing choice toward larger, probabilistic rewards, whereas D 3 receptors appear to exert opposing effects on this form of decision making.
Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor
Selective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive. Here we report a novel series of selective, potent non-catechol D1R agonists with promising in vivo pharmacokinetic properties. These ligands stimulate adenylyl cyclase signaling and are efficacious in a rodent model of Parkinson's disease after oral administration. They exhibit distinct binding to the D1R orthosteric site and a novel functional profile including minimal receptor desensitization, reduced recruitment of β-arrestin, and sustained in vivo efficacy. These results reveal a novel class of D1 agonists with favorable drug-like properties, and define the molecular basis for catechol-specific recruitment of β-arrestin to D1Rs. Dopamine receptor agonists are used for the treatment of various psychiatric diseases. Here, the authors screen approximately three million compounds and identify a novel class of D1R agonists that do not have a catechol scaffold and possess promising pharmacokinetic properties.
Parkinson disease
Parkinson disease is the second-most common neurodegenerative disorder that affects 2–3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L -DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier. Parkinson disease is a common neurodegenerative disorder that is characterized by neuronal loss in the substantia nigra, which causes striatal dopamine deficiency. In this Primer, Poewe et al . discuss the epidemiology, pathophysiology, diagnosis and management of Parkinson disease.
Cell specific photoswitchable agonist for reversible control of endogenous dopamine receptors
Dopamine controls diverse behaviors and their dysregulation contributes to many disorders. Our ability to understand and manipulate the function of dopamine is limited by the heterogenous nature of dopaminergic projections, the diversity of neurons that are regulated by dopamine, the varying distribution of the five dopamine receptors (DARs), and the complex dynamics of dopamine release. In order to improve our ability to specifically modulate distinct DARs, here we develop a photo-pharmacological strategy using a Membrane anchored Photoswitchable orthogonal remotely tethered agonist for the Dopamine receptor (MP-D). Our design selectively targets D1R/D5R receptor subtypes, most potently D1R (MP-D1 ago ), as shown in HEK293T cells. In vivo, we targeted dorsal striatal medium spiny neurons where the photo-activation of MP-D1 ago increased movement initiation, although further work is required to assess the effects of MP-D1 ago on neuronal function. Our method combines ligand and cell type-specificity with temporally precise and reversible activation of D1R to control specific aspects of movement. Our results provide a template for analyzing dopamine receptors. In this study, the authors develop a photo-pharmacological strategy using a Membrane anchored Photoswitchable orthogonal remotely tethered agonist for the Dopamine receptor (MP-D) to selectively and reversibly modulate the D1R receptor subtype.
Sex differences in sensitivity to dopamine receptor manipulations of risk-based decision making in rats
Risky decision making involves the ability to weigh risks and rewards associated with different options to make adaptive choices. Previous work has established a necessary role for the basolateral amygdala (BLA) in mediating effective decision making under risk of punishment, but the mechanisms by which the BLA mediates this process are less clear. Because this form of decision making is profoundly sensitive to dopaminergic (DA) manipulations, we hypothesized that DA receptors in the BLA may be involved in risk-taking behavior. To test this hypothesis, male and female Long-Evans rats were trained in a decision-making task in which rats chose between a small, safe food reward and a larger food reward that was associated with a variable risk of footshock punishment. Once behavioral stability emerged, rats received intra-BLA infusions of ligands targeting distinct dopamine receptor subtypes prior to behavioral testing. Intra-BLA infusions of the dopamine D2 receptor (D2R) agonist quinpirole decreased risk taking in females at all doses, and this reduction in risk taking was accompanied by an increase in sensitivity to punishment. In males, decreased risk taking was only observed at the highest dose of quinpirole. In contrast, intra-BLA manipulations of dopamine D1 or D3 receptors (D1R and D3R, respectively) had no effect on risk taking. Considered together, these data suggest that differential D2R sensitivity in the BLA may contribute to the well-established sex differences in risk taking. Neither D1Rs nor D3Rs, however, appear to contribute to risky decision making in either sex.
Ligand recognition and biased agonism of the D1 dopamine receptor
Dopamine receptors are widely distributed in the central nervous system and are important therapeutic targets for treatment of various psychiatric and neurological diseases. Here, we report three cryo-electron microscopy structures of the D1 dopamine receptor (D1R)-Gs complex bound to two agonists, fenoldopam and tavapadon, and a positive allosteric modulator LY3154207. The structure reveals unusual binding of two fenoldopam molecules, one to the orthosteric binding pocket (OBP) and the other to the extended binding pocket (EBP). In contrast, one elongated tavapadon molecule binds to D1R, extending from OBP to EBP. Moreover, LY3154207 stabilizes the second intracellular loop of D1R in an alpha helical conformation to efficiently engage the G protein. Through a combination of biochemical, biophysical and cellular assays, we further show that the broad conformation stabilized by two fenoldopam molecules and interaction between TM5 and the agonist are important for biased signaling of D1R. D1 dopamine receptor is an important drug target for treatment of hypertension and Parkinson’s disease. Here, authors report three cryo-EM structures of the D1R-Gs complex bound to three distinct D1R-selective drugs.
Dopamine D2-like receptor stimulation blocks negative feedback in visual and spatial reversal learning in the rat: behavioural and computational evidence
RationaleDopamine D2-like receptors (D2R) are important drug targets in schizophrenia and Parkinson’s disease, but D2R ligands also cause cognitive inflexibility such as poor reversal learning. The specific role of D2R in reversal learning remains unclear.ObjectivesWe tested the hypotheses that D2R agonism impairs reversal learning by blocking negative feedback and that antagonism of D1-like receptors (D1R) impairs learning from positive feedback.MethodsMale Lister Hooded rats were trained on a novel visual reversal learning task. Performance on “probe trials”, during which the correct or incorrect stimulus was presented with a third, probabilistically rewarded (50% of trials) and therefore intermediate stimulus, revealed individual learning curves for the processes of positive and negative feedback. The effects of D2R and D1R agonists and antagonists were evaluated. A separate cohort was tested on a spatial probabilistic reversal learning (PRL) task after D2R agonism. Computational reinforcement learning modelling was applied to choice data from the PRL task to evaluate the contribution of latent factors.ResultsD2R agonism with quinpirole dose-dependently impaired both visual reversal and PRL. Analysis of the probe trials on the visual task revealed a complete blockade of learning from negative feedback at the 0.25 mg/kg dose, while learning from positive feedback was intact. Estimated parameters from the model that best described the PRL choice data revealed a steep and selective decrease in learning rate from losses. D1R antagonism had a transient effect on the positive probe trials.ConclusionsD2R stimulation impairs reversal learning by blocking the impact of negative feedback.