Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,639
result(s) for
"Dose-Response Relationship, Radiation"
Sort by:
Health Risks from Exposure to Low Levels of Ionizing Radiation
by
Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation
,
Board on Radiation Effects Research
,
National Research Council
in
Dose-response relationship
,
Dose-Response Relationship, Radiation
,
Ionizing radiation
2006
BEIR VII develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation. It is among the first reports of its kind to include detailed estimates for cancer incidence in addition to cancer mortality. In general, BEIR VII supports previously reported risk estimates for cancer and leukemia, but the availability of new and more extensive data have strengthened confidence in these estimates. A comprehensive review of available biological and biophysical data supports a \"linear-no-threshold\" (LNT) risk model-that the risk of cancer proceeds in a linear fashion at lower doses without a threshold and that the smallest dose has the potential to cause a small increase in risk to humans. The report is from the Board on Radiation Research Effects that is now part of the newly formed Nuclear and Radiation Studies Board.
Principles for modelling dose-response for the risk assessment of chemicals
by
Organization, World Health
in
Chemical Safety
,
Dose-response relationship
,
Dose-Response Relationship, Drug
2009
This volume is part of the ongoing review of the underlying scientific bases for decision-making in chemical risk assessment by International Programme on Chemical Safety. It involves specific consideration of the area of dose-response assessment in the evaluation of information from toxicological studies in animals and from human clinical and epidemiological studies. It covers toxicants with threshold effects and those for which there may be no practical threshold, such as substances that are genotoxic and carcinogenic. The discussions are concerned with that subset of cause-effect relationships commonly referred to as dose-response models, which are typically used to characterize the biological effects of intentional (e.g. drugs and nutrients) and unintentional (e.g. contaminants) exposure to chemicals.This report is intended primarily to provide descriptive guidance for risk assessors in using dose-response modelling in hazard characterization. It will also provide mathematical modellers with an appreciation of issues to be considered when modelling in the context of the risk assessment process. Risk managers will be able to obtain a general understanding of the applications and limitations of dose-response modelling. For both risk assessors and risk managers, some considerations for communicating the results of risk assessments that use dose-response modelling are presented.
Health effects of exposure to low levels of ionizing radiation : BEIR V
by
National Research Council (U.S.). Committee on the Biological Effects of Ionizing Radiations
in
MEDICAL
1990
This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.
Estimating Risk of Low Radiation Doses – A Critical Review of the BEIR VII Report and its Use of the Linear No-Threshold (LNT) Hypothesis
2014
This article explores the origin of the linear no-threshold (LNT) dose-response model and how it came to be used in cancer risk assessment worldwide. Following this historical appraisal is an evaluation of the LNT model, within the framework of the BEIR VII report of the National Academy of Sciences, on the health effects of ionizing radiation. The final section of this article provides an assessment of the LNT model's capacity to make accurate predictions of risk in the low-dose zone based on recent molecular mechanistic findings and epidemiological methods, with particular emphasis on the limitations of epidemiological studies to estimate risks in the low-dose zone.
Journal Article
Risk of Second Primary Thyroid Cancer after Radiotherapy for a Childhood Cancer in a Large Cohort Study: An Update from the Childhood Cancer Survivor Study
2010
Previous studies have indicated that thyroid cancer risk after a first childhood malignancy is curvilinear with radiation dose, increasing at low to moderate doses and decreasing at high doses. Understanding factors that modify the radiation dose response over the entire therapeutic dose range is challenging and requires large numbers of subjects. We quantified the long-term risk of thyroid cancer associated with radiation treatment among 12,547 5-year survivors of a childhood cancer (leukemia, Hodgkin lymphoma and non-Hodgkin lymphoma, central nervous system cancer, soft tissue sarcoma, kidney cancer, bone cancer, neuroblastoma) diagnosed between 1970 and 1986 in the Childhood Cancer Survivor Study using the most current cohort follow-up to 2005. There were 119 subsequent pathologically confirmed thyroid cancer cases, and individual radiation doses to the thyroid gland were estimated for the entire cohort. This cohort study builds on the previous case-control study in this population (69 thyroid cancer cases with follow-up to 2000) by allowing the evaluation of both relative and absolute risks. Poisson regression analyses were used to calculate standardized incidence ratios (SIR), excess relative risks (ERR) and excess absolute risks (EAR) of thyroid cancer associated with radiation dose. Other factors such as sex, type of first cancer, attained age, age at exposure to radiation, time since exposure to radiation, and chemotherapy (yes/no) were assessed for their effect on the linear and exponential quadratic terms describing the dose–response relationship. Similar to the previous analysis, thyroid cancer risk increased linearly with radiation dose up to approximately 20 Gy, where the relative risk peaked at 14.6-fold (95% CI, 6.8–31.5). At thyroid radiation doses >20 Gy, a downturn in the dose–response relationship was observed. The ERR model that best fit the data was linear-exponential quadratic. We found that age at exposure modified the ERR linear dose term (higher radiation risk with younger age) (P < 0.001) and that sex (higher radiation risk among females) (P = 0.008) and time since exposure (higher radiation risk with longer time) (P < 0.001) modified the EAR linear dose term. None of these factors modified the exponential quadratic (high dose) term. Sex, age at exposure and time since exposure were found to be significant modifiers of the radiation-related risk of thyroid cancer and as such are important factors to account for in clinical follow-up and thyroid cancer risk estimation among childhood cancer survivors.
Journal Article
I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident
2011
Background: Current knowledge about Chornobyl-related thyroid cancer risks comes from ecological studies based on grouped doses, case-control studies, and studies of prevalent cancers. Objective: To address this limitation, we evaluated the dose-response relationship for incident thyroid cancers using measurement-based individual iodine-131 (1-131) thyroid dose estimates in a prospective analytic cohort study. Methods: The cohort consists of individuals < 18 years of age on 26 April 1986 who resided in three contaminated oblasts (states) of Ukraine and underwent up to four thyroid screening examinations between 1998 and 2007 (n = 12,514). Thyroid doses of 1-131 were estimated based on individual radioactivity measurements taken within 2 months after the accident, environmental transport models, and interview data. Excess radiation risks were estimated using Poisson regression models. Results: Sixty-five incident thyroid cancers were diagnosed during the second through fourth screenings and 73,004 person-years (PY) of observation. The dose-response relationship was consistent with linearity on relative and absolute scales, although the excess relative risk (ERR) model described data better than did the excess absolute risk (EAR) model. The ERR per gray was 1.91 [95% confidence interval (CI), 0.43-6.34], and the EAR per 10⁴ PY/Gy was 2.21 (95% CI, 0.04-5.78). The ERR per gray varied significantly by oblast of residence but not by time since exposure, use of iodine prophylaxis, iodine status, sex, age, or tumor size. Conclusions: I-131-related thyroid cancer risks persisted for two decades after exposure, with no evidence of decrease during the observation period. The radiation risks, although smaller, are compatible with those of retrospective and ecological post-Chornobyl studies.
Journal Article
Cancer Risks Attributable to Low Doses of Ionizing Radiation: Assessing What We Really Know
by
Preston, Dale L.
,
Setlow, Richard B.
,
Hall, Eric J.
in
Atomic bombs
,
Biological Sciences
,
Biology
2003
High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or γ-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is ≈10-50 mSv for an acute exposure and ≈50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.
Journal Article
A Pooled Analysis of Thyroid Cancer Incidence Following Radiotherapy for Childhood Cancer
2012
Childhood cancer five-year survival now exceeds 70–80%. Childhood exposure to radiation is a known thyroid carcinogen; however, data are limited for the evaluation of radiation dose-response at high doses, modifiers of the dose-response relationship and joint effects of radiotherapy and chemotherapy. To address these issues, we pooled two cohort and two nested case-control studies of childhood cancer survivors including 16,757 patients, with 187 developing primary thyroid cancer. Relative risks (RR) with 95% confidence intervals (CI) for thyroid cancer by treatment with alkylating agents, anthracyclines or bleomycin were 3.25 (0.9–14.9), 4.5 (1.4–17.8) and 3.2 (0.8–10.4), respectively, in patients without radiotherapy, and declined with greater radiation dose (RR trends, P = 0.02, 0.12 and 0.01, respectively). Radiation dose-related RRs increased approximately linearly for <10 Gy, leveled off at 10–15-fold for 10–30 Gy and then declined, but remained elevated for doses >50 Gy. The fitted RR at 10 Gy was 13.7 (95% CI: 8.0–24.0). Dose-related excess RRs increased with decreasing age at exposure (P < 0.01), but did not vary with attained age or time-since-exposure, remaining elevated 25+ years after exposure. Gender and number of treatments did not modify radiation effects. Thyroid cancer risks remained elevated many decades following radiotherapy, highlighting the need for continued follow up of childhood cancer survivors.
Journal Article
Cataracts among Chernobyl Clean-up Workers: Implications Regarding Permissible Eye Exposures
by
Musijachenko, N. V.
,
Medvedovsky, C.
,
Kyrychenko, O. Y.
in
Adult
,
Analytical estimating
,
Atomic bombs
2007
Worgul, B. V., Kundiyev, Y. I., Sergiyenko, N. M., Chumak, V. V., Vitte, P. M., Medvedovsky, C., Bakhanova, E. V., Junk, A. K., Kyrychenko, O. Y., Musijachenko, N. V., Shylo, S. A., Vitte, O. P., Xu, S., Xue, X. and Shore, R. E. Cataracts among Chernobyl Clean-up Workers: Implications Regarding Permissible Eye Exposures. Radiat. Res. 167, 233–243 (2007). The eyes of a prospective cohort of 8,607 Chernobyl clean-up workers (liquidators) were assessed for cataract at 12 and 14 years after exposure. The prevalence of strictly age-related cataracts was low, as expected (only 3.9% had nuclear cataracts at either examination), since 90% of the cohort was younger than 55 years of age at first examination. However, posterior subcapsular or cortical cataracts characteristic of radiation exposure were present in 25% of the subjects. The data for Stage 1 cataracts, and specifically for posterior subcapsular cataracts, revealed a significant dose response. When various cataract end points were analyzed for dose thresholds, the confidence intervals all excluded values greater than 700 mGy. Linear-quadratic dose–response models yielded mostly linear associations, with weak evidence of upward curvature. The findings do not support the ICRP 60 risk guideline assumption of a 5-Gy threshold for “detectable opacities” from protracted exposures but rather point to a dose–effect threshold of under 1 Gy. Thus, given that cataract is the dose-limiting ocular pathology in current eye risk guidelines, revision of the allowable exposure of the human visual system to ionizing radiation should be considered.
Journal Article
Radiation Dose Reconstruction for Epidemiologic Uses
by
National Research Council (U.S.). Committee on an Assessment of CDC Radiation Studies
in
Radiation dosimetry
,
Radiation injuries
,
Radiation injuries -- Epidemiology -- Statistical methods
2000,1995
Growing public concern about releases of radiation into the environment has focused attention on the measurement of exposure of people living near nuclear weapons production facilities or in areas affected by accidental releases of radiation.
Radiation-Dose Reconstruction for Epidemiologic Uses responds to the need for criteria for dose reconstruction studies, particularly if the doses are to be useful in epidemiology. This book provides specific and practical recommendations for whether, when, and how studies should be conducted, with an emphasis on public participation.
Based on the expertise of scientists involved in dozens of dose reconstruction projects, this volume:
Provides an overview of the basic requirements and technical aspects of dose reconstruction.
Presents lessons to be learned from dose reconstructions after Chernobyl, Three Mile Island, and elsewhere.
Explores the potential benefits and limitations of biological markers.
Discusses how to establish the \"source term\"-that is, to determine what was released.
Explores methods for identifying the environmental pathways by which radiation reaches the body.
Offers details on three major categories of dose assessment.