Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,335 result(s) for "Double-stranded"
Sort by:
The molecular mechanism for activating IgA production by Pediococcus acidilactici K15 and the clinical impact in a randomized trial
IgA secretion at mucosal sites is important for host defence against pathogens as well as maintaining the symbiosis with microorganisms present in the small intestine that affect IgA production. In the present study, we tested the ability of 5 strains of lactic acid bacteria stimulating IgA production, being Pediococcus acidilactici K15 selected as the most effective on inducing this protective immunoglobulin. We found that this response was mainly induced via IL-10, as efficiently as IL-6, secreted by K15-stimulated dendritic cells. Furthermore, bacterial RNA was largely responsible for the induction of these cytokines; double-stranded RNA was a major causative molecule for IL-6 production whereas single-stranded RNA was critical factor for IL-10 production. In a randomized, double-blind, placebo-controlled clinical trial, ingestion of K15 significantly increased the secretory IgA (sIgA) concentration in saliva compared with the basal level observed before this intervention. These results indicate that functional lactic acid bacteria induce IL-6 and IL-10 production by dendritic cells, which contribute to upregulating the sIgA concentration at mucosal sites in humans.
Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency
Cancer therapies that target epigenetic repressors can mediate their effects by activating retroelements within the human genome. Retroelement transcripts can form double-stranded RNA (dsRNA) that activates the MDA5 pattern recognition receptor 1 – 6 . This state of viral mimicry leads to loss of cancer cell fitness and stimulates innate and adaptive immune responses 7 , 8 . However, the clinical efficacy of epigenetic therapies has been limited. To find targets that would synergize with the viral mimicry response, we sought to identify the immunogenic retroelements that are activated by epigenetic therapies. Here we show that intronic and intergenic SINE elements, specifically inverted-repeat Alus, are the major source of drug-induced immunogenic dsRNA. These inverted-repeat Alus are frequently located downstream of ‘orphan’ CpG islands 9 . In mammals, the ADAR1 enzyme targets and destabilizes inverted-repeat Alu dsRNA 10 , which prevents activation of the MDA5 receptor 11 . We found that ADAR1 establishes a negative-feedback loop, restricting the viral mimicry response to epigenetic therapy. Depletion of ADAR1 in patient-derived cancer cells potentiates the efficacy of epigenetic therapy, restraining tumour growth and reducing cancer initiation. Therefore, epigenetic therapies trigger viral mimicry by inducing a subset of inverted-repeats Alus, leading to an ADAR1 dependency. Our findings suggest that combining epigenetic therapies with ADAR1 inhibitors represents a promising strategy for cancer treatment. Inverted-repeat Alu elements are the main source of drug-induced immunogenic double-stranded RNAs, which are destabilized by the RNA deaminase ADAR1, thereby limiting activation of the immune response.
Two cGAS-like receptors induce antiviral immunity in Drosophila
In mammals, cyclic GMP–AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide 2′3′-cGAMP in response to cytosolic DNA and this triggers an antiviral immune response. cGAS belongs to a large family of cGAS/DncV-like nucleotidyltransferases that is present in both prokaryotes 1 and eukaryotes 2 – 5 . In bacteria, these enzymes synthesize a range of cyclic oligonucleotides and have recently emerged as important regulators of phage infections 6 – 8 . Here we identify two cGAS-like receptors (cGLRs) in the insect Drosophila melanogaster . We show that cGLR1 and cGLR2 activate Sting- and NF-κB-dependent antiviral immunity in response to infection with RNA or DNA viruses. cGLR1 is activated by double-stranded RNA to produce the cyclic dinucleotide 3′2′-cGAMP, whereas cGLR2 produces a combination of 2′3′-cGAMP and 3′2′-cGAMP in response to an as-yet-unidentified stimulus. Our data establish cGAS as the founding member of a family of receptors that sense different types of nucleic acids and trigger immunity through the production of cyclic dinucleotides beyond 2′3′-cGAMP. Two cGAS-like receptors, cGLR1 and cGLR2, identified in Drosophila melanogaster are shown to induce antiviral immunity in response to RNA or DNA virus infections through the production of 2′3′-cGAMP and 3′2′-cGAMP.
Pervasive downstream RNA hairpins dynamically dictate start-codon selection
Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites 1 – 4 . However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis , we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming. Double-stranded RNA structures downstream of start codons play a role in translation initiation by regulating start-codon selection in plant immune responses, and also contribute to translational reprogramming in mammalian systems.
Sequence determinant of small RNA production by DICER
RNA silencing relies on specific and efficient processing of double-stranded RNA by Dicer, which yields microRNAs (miRNAs) and small interfering RNAs (siRNAs) 1 , 2 . However, our current knowledge of the specificity of Dicer is limited to the secondary structures of its substrates: a double-stranded RNA of approximately 22 base pairs with a 2-nucleotide 3′ overhang and a terminal loop 3 – 11 . Here we found evidence pointing to an additional sequence-dependent determinant beyond these structural properties. To systematically interrogate the features of precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with pre-miRNA variants and human DICER (also known as DICER1). Our analyses revealed a deeply conserved cis -acting element, termed the ‘GYM motif’ (paired G, paired pyrimidine and mismatched C or A), near the cleavage site. The GYM motif promotes processing at a specific position and can override the previously identified ‘ruler’-like counting mechanisms from the 5′ and 3′ ends of pre-miRNA 3 – 6 . Consistently, integrating this motif into short hairpin RNA or Dicer-substrate siRNA potentiates RNA interference. Furthermore, we find that the C-terminal double-stranded RNA-binding domain (dsRBD) of DICER recognizes the GYM motif. Alterations in the dsRBD reduce processing and change cleavage sites in a motif-dependent fashion, affecting the miRNA repertoire in cells. In particular, the cancer-associated R1855L substitution in the dsRBD strongly impairs GYM motif recognition. This study uncovers an ancient principle of substrate recognition by metazoan Dicer and implicates its potential in the design of RNA therapeutics. Massively parallel assays reveal a highly conserved sequence motif termed the GYM motif, which potentiates RNA interference by directing Dicer-mediated small RNA processing.
ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis
Only a small proportion of patients with cancer show lasting responses to immune checkpoint blockade (ICB)-based monotherapies. The RNA-editing enzyme ADAR1 is an emerging determinant of resistance to ICB therapy and prevents ICB responsiveness by repressing immunogenic double-stranded RNAs (dsRNAs), such as those arising from the dysregulated expression of endogenous retroviral elements (EREs) 1 – 4 . These dsRNAs trigger an interferon-dependent antitumour response by activating A-form dsRNA (A-RNA)-sensing proteins such as MDA-5 and PKR 5 . Here we show that ADAR1 also prevents the accrual of endogenous Z-form dsRNA elements (Z-RNAs), which were enriched in the 3′ untranslated regions of interferon-stimulated mRNAs. Depletion or mutation of ADAR1 resulted in Z-RNA accumulation and activation of the Z-RNA sensor ZBP1, which culminated in RIPK3-mediated necroptosis. As no clinically viable ADAR1 inhibitors currently exist, we searched for a compound that can override the requirement for ADAR1 inhibition and directly activate ZBP1. We identified a small molecule, the curaxin CBL0137, which potently activates ZBP1 by triggering Z-DNA formation in cells. CBL0137 induced ZBP1-dependent necroptosis in cancer-associated fibroblasts and reversed ICB unresponsiveness in mouse models of melanoma. Collectively, these results demonstrate that ADAR1 represses endogenous Z-RNAs and identifies ZBP1-mediated necroptosis as a new determinant of tumour immunogenicity masked by ADAR1. Therapeutic activation of ZBP1-induced necroptosis provides a readily translatable avenue for rekindling the immune responsiveness of ICB-resistant human cancers. A small molecule can bypass the RNA-editing enzyme ADAR1 to directly activate the Z-form nucleic acid sensor ZBP1, induce necroptosis in tumour fibroblasts and reverse resistance to immune checkpoint blockade in mouse models of melanoma.
Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants
Pattern-triggered immunity (PTI) is a plant defense response that relies on the perception of conserved microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, respectively). Recently, it has been recognized that PTI restricts virus infection in plants; however, the nature of the viral or infection-induced PTI elicitors and the underlying signaling pathways are still unknown. As double-stranded RNAs (dsRNAs) are conserved molecular patterns associated with virus replication, we applied dsRNAs or synthetic dsRNA analogs to Arabidopsis thaliana and investigated PTI responses. We show that in vitro-generated dsRNAs, dsRNAs purified from virus-infected plants and the dsRNA analog polyinosinic–polycytidylic acid (poly(I:C)) induce typical PTI responses dependent on the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1), but independent of dicer-like (DCL) proteins in Arabidopsis. Moreover, dsRNA treatment of Arabidopsis induces SERK1-dependent antiviral resistance. Screening of Arabidopsis wild accessions demonstrates natural variability in dsRNA sensitivity. Our findings suggest that dsRNAs represent genuine PAMPs in plants, which induce a signaling cascade involving SERK1 and a specific dsRNA receptor. The dependence of dsRNAmediated PTI on SERK1, but not on DCLs, implies that dsRNA-mediated PTI involves membrane-associated processes and operates independently of RNA silencing. dsRNA sensitivity may represent a useful trait to increase antiviral resistance in cultivated plants.
Identification, Molecular Characterization, and Biology of a Novel Quadrivirus Infecting the Plant Fungus Allocryptovalsa sichuanensis
A novel double-stranded RNA (dsRNA) virus was isolated and described from strain ZZZ210557 of plant endophyte Allocryptovalsa sichuanensis. The dsRNA virus contains four dsRNA segments, dsRNA1 to dsRNA4, with a size range of 3.8 to 5.1 kbp. Each possesses a single large ORF and is encapsulated in isometric particles approximately 42–47 nm in diameter. Notably, the dsRNA3 encoded sequence revealed modest similarities to the amino acid sequences of RdRps predicted from the nucleotide sequences of known and suspected members of the family Quadriviridae. Phylogenetic analysis of the putative RdRp with the corresponding proteins of other quadriviruses revealed that the dsRNA virus is a new member belonging to the family Quadriviridae, tentatively named Allocryptovalsa sichuanensis quadrivirus 1 (AsQV1). All four segments of AsQV1 could be successfully cured through ribavirin treatment, whereas it likely has no apparent impact on the morphologies or virulence of the host fungus. This study is the first report of a quadrivirus isolated from the fungus A. sichuanensis, and our results enhance the diversity of the quadrivirus.
Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti
Mosquito-borne diseases are a major threat to human health and are responsible for millions of deaths globally each year. Vector control is one of the most important approaches used in reducing the incidence of these diseases. However, increasing mosquito resistance to chemical insecticides presents challenges to this approach. Therefore, new strategies are necessary to develop the next generation vector control methods. Because of the target specificity of dsRNA, RNAi-based control measures are an attractive alternative to current insecticides used to control disease vectors. In this study, Chitosan (CS) was cross-linked to sodium tripolyphosphate (TPP) to produce nano-sized polyelectrolyte complexes with dsRNA. CS-TPP-dsRNA nanoparticles were prepared by ionic gelation method. The encapsulation efficiency, protection of dsRNA from nucleases, cellular uptake, in vivo biodistribution, larval mortality and gene knockdown efficiency of CS-TPP-dsRNA nanoparticles were determined. The results showed that at a 5:1 weight ratio of CS-TPP to dsRNA, nanoparticles of less than 200 nm mean diameter and a positive surface charge were formed. Confocal microscopy revealed the distribution of the fed CS-TPP-dsRNA nanoparticles in midgut, fat body and epidermis of yellow fever mosquito, Aedes aegypti larvae. Bioassays showed significant mortality of larvae fed on CS-TPP-dsRNA nanoparticles. These assays also showed knockdown of a target gene in CS-TPP-dsRNA nanoparticle fed larvae. These data suggest that CS-TPP nanoparticles may be used for delivery of dsRNA to mosquito larvae.
Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate antiviral responses through MAVS
In the past two decades, emerging studies have suggested that DExD/H box helicases belonging to helicase superfamily 2 (SF2) play essential roles in antiviral innate immunity. However, the antiviral functions of helicase SF1, which shares a conserved helicase core with SF2, are little understood. Here we demonstrate that zinc finger NFX1-type containing 1 (ZNFX1), a helicase SF1, is an interferon (IFN)-stimulated, mitochondrial-localised dsRNA sensor that specifically restricts the replication of RNA viruses. Upon virus infection, ZNFX1 immediately recognizes viral RNA through its Armadillo-type fold and P-loop domain and then interacts with mitochondrial antiviral signalling protein to initiate the type I IFN response without depending on retinoic acid-inducible gene I-like receptors (RLRs). In short, as is the case with interferon-stimulated genes (ISGs) alone, ZNFX1 can induce IFN and ISG expression at an early stage of RNA virus infection to form a positively regulated loop of the well-known RLR signalling. This provides another layer of understanding of the complexity of antiviral immunity. Wang et al. identify ZNFX1 as a mitochondria-localised sensor that recognizes viral dsRNA and induces a type I interferon response, thereby restricting virus infection.